Deep Learning Based Nonlinear Dimensionality Reduction for Emulators of Numerical Thermosphere Density Models

Modeling and forecasting of atmospheric drag for space objects in low Earth orbit (LEO) is a critical challenge for space situational awareness and environment safety and sustainability. The largest source of dynamics error or uncertainty affecting drag is the thermospheric density. Current operatio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2024 IEEE Congress on Evolutionary Computation (CEC) s. 1 - 9
Hlavní autoři: Licata, Richard J., Mehta, Piyush M.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 30.06.2024
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Modeling and forecasting of atmospheric drag for space objects in low Earth orbit (LEO) is a critical challenge for space situational awareness and environment safety and sustainability. The largest source of dynamics error or uncertainty affecting drag is the thermospheric density. Current operations use empirical models that lack fidelity and are deterministic resulting in unrealistic state and covariance v_{rel} predictions. For more than two decades, numerical physics-based models of thermospheric density have been touted as the next big thing for drag modeling. However, the computational cost combined with the lack of mature algorithms for data assimilation (or C_{D} model-data fusion) has not yet allowed them to make impact in operations. The research community has seen a recent trend towards the development of reduced order models or emulators to overcome these limitations for enabling operational deployment of numerical density models. Dimensionality reduction is an important first step in this process. We build upon previous work in the community to design a nonlinear dimensionality reduction approach based in a deep convolutional autoencoder (CAE). We develop a new architecture that employs an attention module, spatial loss scaling, and weighted sampling to optimize performance and overcome data imbalance. We also employ an orthogonality constraint for enabling robust data assimilation as the next step. Results show that we achieve performance similar in terms of reconstruction error (−2%) to that of the robust but linear principal component analysis (PCA) approach while significantly improving performance during nonlinear periods of geomagnetic storms.
AbstractList Modeling and forecasting of atmospheric drag for space objects in low Earth orbit (LEO) is a critical challenge for space situational awareness and environment safety and sustainability. The largest source of dynamics error or uncertainty affecting drag is the thermospheric density. Current operations use empirical models that lack fidelity and are deterministic resulting in unrealistic state and covariance v_{rel} predictions. For more than two decades, numerical physics-based models of thermospheric density have been touted as the next big thing for drag modeling. However, the computational cost combined with the lack of mature algorithms for data assimilation (or C_{D} model-data fusion) has not yet allowed them to make impact in operations. The research community has seen a recent trend towards the development of reduced order models or emulators to overcome these limitations for enabling operational deployment of numerical density models. Dimensionality reduction is an important first step in this process. We build upon previous work in the community to design a nonlinear dimensionality reduction approach based in a deep convolutional autoencoder (CAE). We develop a new architecture that employs an attention module, spatial loss scaling, and weighted sampling to optimize performance and overcome data imbalance. We also employ an orthogonality constraint for enabling robust data assimilation as the next step. Results show that we achieve performance similar in terms of reconstruction error (−2%) to that of the robust but linear principal component analysis (PCA) approach while significantly improving performance during nonlinear periods of geomagnetic storms.
Author Licata, Richard J.
Mehta, Piyush M.
Author_xml – sequence: 1
  givenname: Richard J.
  orcidid: 0000-0002-5240-2322
  surname: Licata
  fullname: Licata, Richard J.
  organization: Mechanical and Aerospace Engineering West Virginia University,Morgantown,U.S.A
– sequence: 2
  givenname: Piyush M.
  orcidid: 0000-0003-0624-7605
  surname: Mehta
  fullname: Mehta, Piyush M.
  organization: Mechanical and Aerospace Engineering West Virginia University,Morgantown,U.S.A
BookMark eNo1kMFOwzAQRI0EByj9A4T8Aw3e2EnsI6ShIIUiodyrTbIBS4ld2emhf08QMJenGWnmMDfs0nlHjN2DSACEeSirMhdGQJKKVCUgcoCigAu2NoXRMhNSaJln12zaEh15TRicdZ_8CSP1fO_daN2S8a2dyEXrHY52PvMP6k_dvFg--MCr6TTi7EPkfuD700TBdjjy5ovC5ONxAfHtT31pvvmexnjLrgYcI63_uGLNc9WUL5v6ffdaPtYba2De4ABklFSocgSlBWps805iobuMpCQNaYqiV700XdYa1dGwqDUDAPY5ablid7-zlogOx2AnDOfD_wnyG4DmWVE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC60901.2024.10611771
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350308365
EndPage 9
ExternalDocumentID 10611771
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-af1e9434a46a1480a8ab6c3a78c5e33e8122a0d4d39c5b94ceffffb9f11ad6e83
IEDL.DBID RIE
IngestDate Wed Aug 14 05:40:31 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-af1e9434a46a1480a8ab6c3a78c5e33e8122a0d4d39c5b94ceffffb9f11ad6e83
ORCID 0000-0002-5240-2322
0000-0003-0624-7605
PageCount 9
ParticipantIDs ieee_primary_10611771
PublicationCentury 2000
PublicationDate 2024-June-30
PublicationDateYYYYMMDD 2024-06-30
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-30
  day: 30
PublicationDecade 2020
PublicationTitle 2024 IEEE Congress on Evolutionary Computation (CEC)
PublicationTitleAbbrev CEC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8749065
Snippet Modeling and forecasting of atmospheric drag for space objects in low Earth orbit (LEO) is a critical challenge for space situational awareness and environment...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Atmospheric modeling
Attention
Computational modeling
Computer architecture
Convolutional Autoencoder
Data models
Dimensionality Reduction
Low earth orbit satellites
Orbital Drag
Predictive models
Space vehicles
Thermospheric Density Emulator
Title Deep Learning Based Nonlinear Dimensionality Reduction for Emulators of Numerical Thermosphere Density Models
URI https://ieeexplore.ieee.org/document/10611771
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYmACRBFveWBNm8SuHyt9iAFFFerQrXLsM6rUNlXS9vfjS1IQAwOeLCuWpbvI353t7ztCXkIMIjwXEFkBPOKgfaQFuEjw3A5AW-Z5TRR-l1mm5nM9bcnqNRcGAOrHZ9DDbn2X7wq7x6OyPqYviUTG-KmUoiFrtazfJNb94Xgo4oBvIetLee_48a-yKTVqTC7-ud4l6f7w7-j0G1muyAlsrsl6BLClrR7qJ30N8ONo1ihdmJKOUKa_kdgIgTX9QElWNDoNUSkdr7FKV1FWtPA02ze3NCsa_pFyXVSoLAB0hNPDTKyOtqq6ZDYZz4ZvUVssIVrqZBcZnwBKvRkuTMhwYqNMLiwzUgWTMwYBx1MTO-6YtoNccws-tFz7JDFOgGI3pLMpNnBLaNj9YgZGMqWCo4Q1nNncKkjTODdCujvSRVMtto0cxuJopfs_xh_IOTqkeWT3SDq7cg9P5MwedsuqfK6d-AV_J6Jm
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yBT2pOPG3OXjtljZZmlzdDybOMmSH3UaavMhgW0fb-febtJ3iwYM5hdAQeK_key_J9z2EnlwMwi3jEGgOLGAgbSA5mICzVPdAampZRRSexEki5nM5bcjqFRcGAKrHZ9Dx3eou32R654_Kuj59CWPPGD_sMRaRmq7V8H5DIrv9YZ8Th3Au74tYZ__5r8IpFW6MTv-54hlq_zDw8PQbW87RAWwu0HoAsMWNIuoHfnYAZHBSa12oHA-8UH8tsuFCa_zuRVm92bGLS_Fw7et0ZXmBM4uTXX1Ps8LuL8nXWeG1BQAP_HQ309dHWxVtNBsNZ_1x0JRLCJYyLANlQ_Bib4px5XIcooRKuaYqFs7olIJD8kgRwwyVupdKpsG6lkobhspwEPQStTbZBq4QdvsfoaBiKoRzFdeKUZ1qAVFEUsVjc43a3lSLbS2Isdhb6eaP8Ud0PJ69TRaTl-T1Fp1459RP7u5Qq8x3cI-O9Ge5LPKHyqFfHF-lrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+Congress+on+Evolutionary+Computation+%28CEC%29&rft.atitle=Deep+Learning+Based+Nonlinear+Dimensionality+Reduction+for+Emulators+of+Numerical+Thermosphere+Density+Models&rft.au=Licata%2C+Richard+J.&rft.au=Mehta%2C+Piyush+M.&rft.date=2024-06-30&rft.pub=IEEE&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1109%2FCEC60901.2024.10611771&rft.externalDocID=10611771