Abnormal Event Detection in Videos using LSTM Convolutional Autoencoder

This research investigates the application of a novel LSTM Convolutional Autoencoder (LSTM-CAE) framework for video anomaly detection, utilizing the UCSD Anomaly Detection Dataset. Traditional methods in video anomaly detection often face challenges in capturing both temporal and spatial dependencie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intelligent Systems and Computer Vision (Online) S. 1 - 4
Hauptverfasser: Berroukham, Abdelhafid, Housni, Khalid, Lahraichi, Mohammed
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 08.05.2024
Schlagworte:
ISSN:2768-0754
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research investigates the application of a novel LSTM Convolutional Autoencoder (LSTM-CAE) framework for video anomaly detection, utilizing the UCSD Anomaly Detection Dataset. Traditional methods in video anomaly detection often face challenges in capturing both temporal and spatial dependencies within dynamic scenes. The proposed LSTM-CAE integrates Long Short-Term Memory networks and Convolutional Autoencoders to overcome these challenges, demonstrating superior performance compared to conventional techniques. Despite challenges in model interpretability and hyperparameter tuning, the findings emphasize the efficacy of the proposed approach in enhancing precision and adaptability in video anomaly detection. The implications of this research extend to diverse applications in security and surveillance. Future work may explore ensemble methods, attention mechanisms, and transfer learning for further refinement and generalizability of the LSTM-CAE framework. Overall, this study contributes to the advancement of video anomaly detection methodologies, providing a foundation for continued exploration and application of deep learning approaches in this domain.
ISSN:2768-0754
DOI:10.1109/ISCV60512.2024.10620098