Abnormal Event Detection in Videos using LSTM Convolutional Autoencoder

This research investigates the application of a novel LSTM Convolutional Autoencoder (LSTM-CAE) framework for video anomaly detection, utilizing the UCSD Anomaly Detection Dataset. Traditional methods in video anomaly detection often face challenges in capturing both temporal and spatial dependencie...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Intelligent Systems and Computer Vision (Online) s. 1 - 4
Hlavní autoři: Berroukham, Abdelhafid, Housni, Khalid, Lahraichi, Mohammed
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 08.05.2024
Témata:
ISSN:2768-0754
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This research investigates the application of a novel LSTM Convolutional Autoencoder (LSTM-CAE) framework for video anomaly detection, utilizing the UCSD Anomaly Detection Dataset. Traditional methods in video anomaly detection often face challenges in capturing both temporal and spatial dependencies within dynamic scenes. The proposed LSTM-CAE integrates Long Short-Term Memory networks and Convolutional Autoencoders to overcome these challenges, demonstrating superior performance compared to conventional techniques. Despite challenges in model interpretability and hyperparameter tuning, the findings emphasize the efficacy of the proposed approach in enhancing precision and adaptability in video anomaly detection. The implications of this research extend to diverse applications in security and surveillance. Future work may explore ensemble methods, attention mechanisms, and transfer learning for further refinement and generalizability of the LSTM-CAE framework. Overall, this study contributes to the advancement of video anomaly detection methodologies, providing a foundation for continued exploration and application of deep learning approaches in this domain.
AbstractList This research investigates the application of a novel LSTM Convolutional Autoencoder (LSTM-CAE) framework for video anomaly detection, utilizing the UCSD Anomaly Detection Dataset. Traditional methods in video anomaly detection often face challenges in capturing both temporal and spatial dependencies within dynamic scenes. The proposed LSTM-CAE integrates Long Short-Term Memory networks and Convolutional Autoencoders to overcome these challenges, demonstrating superior performance compared to conventional techniques. Despite challenges in model interpretability and hyperparameter tuning, the findings emphasize the efficacy of the proposed approach in enhancing precision and adaptability in video anomaly detection. The implications of this research extend to diverse applications in security and surveillance. Future work may explore ensemble methods, attention mechanisms, and transfer learning for further refinement and generalizability of the LSTM-CAE framework. Overall, this study contributes to the advancement of video anomaly detection methodologies, providing a foundation for continued exploration and application of deep learning approaches in this domain.
Author Lahraichi, Mohammed
Housni, Khalid
Berroukham, Abdelhafid
Author_xml – sequence: 1
  givenname: Abdelhafid
  surname: Berroukham
  fullname: Berroukham, Abdelhafid
  email: a.berroukham@gmail.com
  organization: Ibne Tofail University,Faculty of Science,Department of Computer Science,Kenitra,Morocco
– sequence: 2
  givenname: Khalid
  surname: Housni
  fullname: Housni, Khalid
  email: housni.khalid@uit.ac.ma
  organization: Ibne Tofail University,Faculty of Science,Department of Computer Science,Kenitra,Morocco
– sequence: 3
  givenname: Mohammed
  surname: Lahraichi
  fullname: Lahraichi, Mohammed
  email: lahraichi.mohamed@gmail.com
  organization: Ibne Tofail University,Faculty of Science,Department of Computer Science,Kenitra,Morocco
BookMark eNo1j91KAzEUhKMoWGvfQDAvsOtJsskml8taa2HFi5belmxyViJtIvtT8O2tqDAwc_HNwNySq5giEvLAIGcMzON6U-8USMZzDrzIGSgOYPQFWZjSaCHhLFaKSzLjpdIZlLK4IYth-AAAwaFgHGZkVbUx9Ud7oMsTxpE-4YhuDCnSEOkueEwDnYYQ32mz2b7SOsVTOkw_wLlSTWPC6JLH_o5cd_Yw4OLP52T7vNzWL1nztlrXVZMFw8bMtoVunfPedlwKdg7GFBqlKRWDTpfGGWydtJ63RnrhneWdVkpqhdy2XSfm5P53NiDi_rMPR9t_7f-vi29lxlC-
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISCV60512.2024.10620098
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350350173
9798350350180
EISSN 2768-0754
EndPage 4
ExternalDocumentID 10620098
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i91t-ab48bccddaf2531cdd9948e597610f879c9ebc5ad2b95d3dca2f866586e2abff3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:31:52 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-ab48bccddaf2531cdd9948e597610f879c9ebc5ad2b95d3dca2f866586e2abff3
PageCount 4
ParticipantIDs ieee_primary_10620098
PublicationCentury 2000
PublicationDate 2024-May-8
PublicationDateYYYYMMDD 2024-05-08
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-8
  day: 08
PublicationDecade 2020
PublicationTitle Intelligent Systems and Computer Vision (Online)
PublicationTitleAbbrev ISCV
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204120
Score 1.8916045
Snippet This research investigates the application of a novel LSTM Convolutional Autoencoder (LSTM-CAE) framework for video anomaly detection, utilizing the UCSD...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Anomaly detection
Autoencoder
Deep Learning
Ensemble learning
Event detection
Intelligent systems
LSTM
Security
Surveillance
Transfer learning
Title Abnormal Event Detection in Videos using LSTM Convolutional Autoencoder
URI https://ieeexplore.ieee.org/document/10620098
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEA5VeuipLbX0TQ69xpqY3U2OYrUtWBEU8SZ5TMpC2S26-vubxNXSQw-9DYGEvIaZTL5vBqFHlTqrE82J7hhDOOWKKJVxYlyirVAqYRGMOR9l47FYLOSkJqtHLgwARPAZtIMY__JtaTYhVOY1PA3BfNFAjSxLd2StQ0Cly0LqqE6N4aId-fQ27c-9t04D34rx9r73rzoq0YwMT_85gTPU-iHk4cnB1JyjIygu0EtPF8Hj_MSDAFrEz1BFXFWB8wLPcwvlGgdY-wceTWfv2A-1re-Z79LbVGXIYWlh1UKz4WDWfyV1XQSSS1oRpbnQxlirHPMa5AUpuQD_MvCukBOZNBK0SZRlWia2a41iLmS1EykwpZ3rXqJmURZwhbA33sAz7_YIKznXUlmaMk0tgJEupe4atcImLL92mS-W-_Xf_NF-i07CVkdAoLhDzWq1gXt0bLZVvl49xPP6BgybmEM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aBT2pWPFtDl63dtPsbnIs1drithS6lN5KHhNZkF1pt_39JnFb8eDBWwhMSCYJM5l83wxCjyI2WkaSBrKtVEBDKgIhEhooE0nNhIiIB2PO0mQ8ZvM5n9Rkdc-FAQAPPoOWa_q_fF2qtQuV2Rseu2A-20cHrnRWTdfahVQ6xCWPatcorrDNn4bT3sz666FjXBHa2sr_qqTiDUn_5J9TOEXNH0oenuyMzRnag-IcvXZl4XzOD_ziYIv4GSqPrCpwXuBZrqFcYQdsf8fpNBthO9SmPmlWpLuuSpfFUsOyibL-S9YbBHVlhCDnYRUISZlUSmthiL1DtsE5ZWDfBtYZMizhioNUkdBE8kh3tBLEuLx2LAYipDGdC9QoygIuEbbmG2hiHR-mOaWSCx3GRIYaQHETh-YKNZ0SFp_fuS8W2_Vf_9H_gI4G2ShdpMPx2w06dmr38EB2ixrVcg136FBtqny1vPd79wUsmJuM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Intelligent+Systems+and+Computer+Vision+%28Online%29&rft.atitle=Abnormal+Event+Detection+in+Videos+using+LSTM+Convolutional+Autoencoder&rft.au=Berroukham%2C+Abdelhafid&rft.au=Housni%2C+Khalid&rft.au=Lahraichi%2C+Mohammed&rft.date=2024-05-08&rft.pub=IEEE&rft.eissn=2768-0754&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FISCV60512.2024.10620098&rft.externalDocID=10620098