Real-time RL-based Matching with H3 Geohash Partitioning in Smart Freight Platform

This research presents a novel Deep Q-Learning (DQL) framework designed for efficient real-time matching of shipments and vehicles in the freight transportation sector. The framework utilizes the H3 geospatial indexing system for accurate positioning and employs a pre-filtering mechanism to streamli...

Full description

Saved in:
Bibliographic Details
Published in:IEEE Vehicular Technology Conference pp. 1 - 7
Main Authors: Shiri, Ali, YarAhmadi, Asad, Keivanpour, Samira, Lamghari, Amina
Format: Conference Proceeding
Language:English
Published: IEEE 07.10.2024
Subjects:
ISSN:2577-2465
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This research presents a novel Deep Q-Learning (DQL) framework designed for efficient real-time matching of shipments and vehicles in the freight transportation sector. The framework utilizes the H3 geospatial indexing system for accurate positioning and employs a pre-filtering mechanism to streamline the matching process. When evaluated on a simulated model of Montreal's transportation network, the framework demonstrates promising results in generating matches that reduce travel distance and prioritize timely service. Through extensive experimentation, a configuration utilizing ReLU activation was identified as particularly efficient, even under limited computational resources. This research contributes to the development of advanced, real-time matching algorithms in logistics and show-cases the potential of integrating reinforcement learning with geospatial analysis to address complex transportation challenges. These findings offer valuable insights for freight companies seeking to improve their matching processes, potentially leading to cost reductions and enhanced service quality.
AbstractList This research presents a novel Deep Q-Learning (DQL) framework designed for efficient real-time matching of shipments and vehicles in the freight transportation sector. The framework utilizes the H3 geospatial indexing system for accurate positioning and employs a pre-filtering mechanism to streamline the matching process. When evaluated on a simulated model of Montreal's transportation network, the framework demonstrates promising results in generating matches that reduce travel distance and prioritize timely service. Through extensive experimentation, a configuration utilizing ReLU activation was identified as particularly efficient, even under limited computational resources. This research contributes to the development of advanced, real-time matching algorithms in logistics and show-cases the potential of integrating reinforcement learning with geospatial analysis to address complex transportation challenges. These findings offer valuable insights for freight companies seeking to improve their matching processes, potentially leading to cost reductions and enhanced service quality.
Author Shiri, Ali
Lamghari, Amina
YarAhmadi, Asad
Keivanpour, Samira
Author_xml – sequence: 1
  givenname: Ali
  surname: Shiri
  fullname: Shiri, Ali
  email: Ali.Shiri@polymtl.ca
  organization: Polytechnique Montreal,Department of Mathematics and Industrial Engineering,Canada
– sequence: 2
  givenname: Asad
  surname: YarAhmadi
  fullname: YarAhmadi, Asad
  email: Asad.Yarahmadi@polymtl.ca
  organization: Polytechnique Montreal,Department of Mathematics and Industrial Engineering,Canada
– sequence: 3
  givenname: Samira
  surname: Keivanpour
  fullname: Keivanpour, Samira
  email: Samira.Keivanpour@polymtl.ca
  organization: Polytechnique Montreal,Department of Mathematics and Industrial Engineering,Canada
– sequence: 4
  givenname: Amina
  surname: Lamghari
  fullname: Lamghari, Amina
  email: Amina.Lamghari@uqtr.ca
  organization: Université du Québec à Trois-Rivières,Department of Management,Canada
BookMark eNo1UM1KAzEYjKJgW_sGHnLzlJpsssnmKMVthYqlLV7Lt5sv3cj-yG5AfPtuUU_DzDDDMFNy03YtEvIo-EIIbp8-DsuEJ4rlUNdailQuLnQhuEmNMuqKzK2xmRwdYUymr8kkSY1hidLpHZkOwyfnXAidTMhuh1CzGBqkuw0rYEBH3yCWVWhP9DvEiq4lXWFXwVDRLfQxxNC1FzO0dN-MAs17DKcq0m0N0Xd9c09uPdQDzv9wRvb5y2G5Zpv31evyecOCFZGB5QkI7ZRPM9CKy9QDInqO4EWBjqMzhReglHOm9LbIrC8LW3pntAYnZ-ThtzWMqeNXH8YtP8f_B-QZin5WFQ
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/VTC2024-Fall63153.2024.10757474
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331517786
EISSN 2577-2465
EndPage 7
ExternalDocumentID 10757474
Genre orig-research
GrantInformation_xml – fundername: Mitacs
  funderid: 10.13039/501100004489
GroupedDBID -~X
6IE
6IH
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i91t-a902a16d4f58a64035faeeef0eaf1bed0ed7bf1a44dd7cf9b89fcb9cfd766ad3
IEDL.DBID RIE
IngestDate Wed Jan 15 06:20:47 EST 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-a902a16d4f58a64035faeeef0eaf1bed0ed7bf1a44dd7cf9b89fcb9cfd766ad3
PageCount 7
ParticipantIDs ieee_primary_10757474
PublicationCentury 2000
PublicationDate 2024-Oct.-7
PublicationDateYYYYMMDD 2024-10-07
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-Oct.-7
  day: 07
PublicationDecade 2020
PublicationTitle IEEE Vehicular Technology Conference
PublicationTitleAbbrev VTC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001162
Score 2.2698176
Snippet This research presents a novel Deep Q-Learning (DQL) framework designed for efficient real-time matching of shipments and vehicles in the freight...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Companies
Computational modeling
Costs
Deep Q-Learning
Freight Transportation
Geospatial analysis
Indexing
Learning-based algorithms
Logistics
Real-time Matching
Real-time systems
Reinforcement Learning
Smart Transportation
Transportation
Vehicle dynamics
Vehicular and wireless technologies
Title Real-time RL-based Matching with H3 Geohash Partitioning in Smart Freight Platform
URI https://ieeexplore.ieee.org/document/10757474
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwED4VVFXt0hdV3_JQqZMpThwbz6gpA0URoIoNObEtkGioIPT39xwCbYcO3ZIbrOT8uO--890BPPg7YQHCUMpt5NBBCRVNJVPUBYFDiTTBps5sT_b77fFYJVWyepkLY60tL5_Zpn8sY_lmka09VYY7XEYIf3kNalKKTbLW7thlTAQH8FgV0Xx6G3XQr-c01vO5CHFfN_1rczvEr2YqpS2Jj__5FSfQ-M7KI8nO3pzCns3P4OhHQcFzGAwQ91HfL54MetRbKENe8bD1NBPxlCvphuTFLqZ6NSWJXzUVH0tmORm-o4DEy5IsJclcFx7QNmAYP486XVp1TaAzxQqqVSvQTBjuorYWqPzIafwF17LasdSaljUydUxzbozMnErbymWpypyRQmgTXkA9X-T2EkhoBNo1dMeYU1ywVPGWM6FDPJLqLBDmChpeOZOPTVmMyVYv13_Ib-CwnBEffZe3UC-Wa3sH-9lnMVst78vJ_AKdu6BK
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BQTwWXkW88YDE5BInjl3PFaGItIraCrFVTmyrlUqK2pTfj52mBQYGtuQGKzk_7rvvfHcAd-5OmG9hKKY6NNZBCQROORHY-L6xEq78ZZ3ZmHe7zbc3kVTJ6mUujNa6vHymG-6xjOWrabZwVJnd4Ty08JduwpZrnVWla60PXkKYvwP3VRnNh9dBy3r2FEdyMmGB3dkN99pYDfKrnUppTaKDf37HIdS_8_JQsrY4R7Ch82PY_1FS8AR6PYv8sOsYj3oxdjZKoY49bh3RhBzpitoBetLTkZyPUOLWTcXIonGO-u9WgKJZSZeiZCILB2nr0I8eB602rvom4LEgBZbC8yVhipqwKZlVf2ik_QXjaWlIqpWnFU8NkZQqxTMj0qYwWSoyozhjUgWnUMunuT4DFChmLZt1yIgRlJFUUM-owFhEksrMZ-oc6k45w49lYYzhSi8Xf8hvYbc96MTD-Ln7cgl75ey4WDy_gloxW-hr2M4-i_F8dlNO7BcmIqOT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Vehicular+Technology+Conference&rft.atitle=Real-time+RL-based+Matching+with+H3+Geohash+Partitioning+in+Smart+Freight+Platform&rft.au=Shiri%2C+Ali&rft.au=YarAhmadi%2C+Asad&rft.au=Keivanpour%2C+Samira&rft.au=Lamghari%2C+Amina&rft.date=2024-10-07&rft.pub=IEEE&rft.eissn=2577-2465&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FVTC2024-Fall63153.2024.10757474&rft.externalDocID=10757474