Positioning in WLAN Networks Based on SVM Algorithms and Space Segmentation
Due to the widespread availability of WLAN networks, positioning techniques in these environments have become a subject of intense research. In this paper, a combination of Support Vector Classification (SVC) and Support Vector Regression (SVR) machine learning algorithms was used, along with space...
Uloženo v:
| Vydáno v: | Telecommunications Forum s. 1 - 4 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
26.11.2024
|
| Témata: | |
| ISSN: | 2994-5828 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Due to the widespread availability of WLAN networks, positioning techniques in these environments have become a subject of intense research. In this paper, a combination of Support Vector Classification (SVC) and Support Vector Regression (SVR) machine learning algorithms was used, along with space segmentation, to solve the problem of user localization in a WLAN network. The proposed technique was thoroughly tested in a real WLAN environment. The lowest mean positioning error was achieved when the space was divided into 6 subspaces, amounting to 7.69m. |
|---|---|
| ISSN: | 2994-5828 |
| DOI: | 10.1109/TELFOR63250.2024.10819125 |