Research on Adaptive Control and Optimal Scheduling Algorithm Under Mixed Energy Architecture of Data Center

An approximate dynamic programming optimization scheduling strategy combining independent microgrid day-ahead scheduling system and adaptive weighted sum algorithm is proposed. The strategy aims to minimize energy consumption and maximize energy utilization efficiency of data centers through intelli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Conference on Information Systems and Computer Aided Education (Online) S. 1159 - 1164
Hauptverfasser: Zhang, Wancai, Xia, Xuwei, Zhang, Nan, Yang, Wenqing, Mu, Jun, Wang, Tao
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 27.09.2024
Schlagworte:
ISSN:2770-663X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract An approximate dynamic programming optimization scheduling strategy combining independent microgrid day-ahead scheduling system and adaptive weighted sum algorithm is proposed. The strategy aims to minimize energy consumption and maximize energy utilization efficiency of data centers through intelligent control means. Firstly, this paper designs a day-ahead scheduling system of an independent micro-grid, which can integrate a variety of energy inputs, including solar energy, wind energy, traditional grid power supply and energy storage equipment, to ensure the stability and reliability of the energy supply of data centers. Secondly, the adaptive weighted sum algorithm is introduced, which can dynamically adjust the proportion of each energy input according to the changes of real-time energy market price and environmental conditions, so as to achieve the optimization of energy cost. Finally, through the approximate dynamic programming algorithm, the adaptive ability of the system is further improved, so that it can automatically learn and optimize the scheduling decision in the complex and changeable energy environment. In order to verify the effectiveness of the proposed strategy, a system simulation experiment is carried out. The experimental results show that compared with the traditional fixed scheduling strategy, the proposed adaptive control and optimal scheduling algorithm can significantly reduce the energy cost of data centers, and improve the flexibility and response speed of energy use.
AbstractList An approximate dynamic programming optimization scheduling strategy combining independent microgrid day-ahead scheduling system and adaptive weighted sum algorithm is proposed. The strategy aims to minimize energy consumption and maximize energy utilization efficiency of data centers through intelligent control means. Firstly, this paper designs a day-ahead scheduling system of an independent micro-grid, which can integrate a variety of energy inputs, including solar energy, wind energy, traditional grid power supply and energy storage equipment, to ensure the stability and reliability of the energy supply of data centers. Secondly, the adaptive weighted sum algorithm is introduced, which can dynamically adjust the proportion of each energy input according to the changes of real-time energy market price and environmental conditions, so as to achieve the optimization of energy cost. Finally, through the approximate dynamic programming algorithm, the adaptive ability of the system is further improved, so that it can automatically learn and optimize the scheduling decision in the complex and changeable energy environment. In order to verify the effectiveness of the proposed strategy, a system simulation experiment is carried out. The experimental results show that compared with the traditional fixed scheduling strategy, the proposed adaptive control and optimal scheduling algorithm can significantly reduce the energy cost of data centers, and improve the flexibility and response speed of energy use.
Author Zhang, Wancai
Wang, Tao
Xia, Xuwei
Mu, Jun
Yang, Wenqing
Zhang, Nan
Author_xml – sequence: 1
  givenname: Wancai
  surname: Zhang
  fullname: Zhang, Wancai
  organization: State Grid Electric Power Research Institute Co., Ltd.,Nanjing,China
– sequence: 2
  givenname: Xuwei
  surname: Xia
  fullname: Xia, Xuwei
  organization: Electric Power Research Institute of State Grid Ningxia Electric Power Co., Ltd.,Yinchuan,China
– sequence: 3
  givenname: Nan
  surname: Zhang
  fullname: Zhang, Nan
  email: zhangnan2@sgepri.sgcc.com.cn
  organization: State Grid Electric Power Research Institute Co., Ltd.,Nanjing,China
– sequence: 4
  givenname: Wenqing
  surname: Yang
  fullname: Yang, Wenqing
  organization: State Grid Electric Power Research Institute Co., Ltd.,Nanjing,China
– sequence: 5
  givenname: Jun
  surname: Mu
  fullname: Mu, Jun
  organization: State Grid Electric Power Research Institute Co., Ltd.,Nanjing,China
– sequence: 6
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
  organization: State Grid Electric Power Research Institute Co., Ltd.,Nanjing,China
BookMark eNo1kNtKAzEYhKMoWGvfwIvg_dYcNqfLZa1aqBSsgncl3fxpI9tsyaZi394FFQYGBr5hmGt0EbsICN1RMqWUmPt5PV_V1UwyTsopI6ycUqIk5UqcoYlRRnNBBilJztGIKUUKKfnHFZr0_SchhDNSDsAIta_Qg03NDncRV84ecvgCXHcxp67FNjq8HKK9bfGq2YE7tiFucdVuuxTybo_fo4OEX8I3ODyLkLYnXA1lIUOTjwlw5_GDzRbXEDOkG3TpbdvD5M_HaPU4e6ufi8XyaV5XiyIYmgvtGZSupFyLzcZT6ZkBxiXhxgunAZTU2jRciKYUQnnlqPZOgBqwDW8sH6Pb39YAAOtDGtan0_r_Hv4D_7xdgw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICISCAE62304.2024.10761375
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350350760
EISSN 2770-663X
EndPage 1164
ExternalDocumentID 10761375
Genre orig-research
GrantInformation_xml – fundername: State Grid Corporation of China's Science and Technology Project
  grantid: SGNXDK00WLJS2200144
  funderid: 10.13039/501100010880
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i91t-8f2e4d41385bbf16f29e236039f5d8ee76889c355c4557f7d18fd5e7f2eb3ca3
IEDL.DBID RIE
IngestDate Wed Jan 15 06:21:38 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-8f2e4d41385bbf16f29e236039f5d8ee76889c355c4557f7d18fd5e7f2eb3ca3
PageCount 6
ParticipantIDs ieee_primary_10761375
PublicationCentury 2000
PublicationDate 2024-Sept.-27
PublicationDateYYYYMMDD 2024-09-27
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sept.-27
  day: 27
PublicationDecade 2020
PublicationTitle International Conference on Information Systems and Computer Aided Education (Online)
PublicationTitleAbbrev ICISCAE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204107
Score 1.8839451
Snippet An approximate dynamic programming optimization scheduling strategy combining independent microgrid day-ahead scheduling system and adaptive weighted sum...
SourceID ieee
SourceType Publisher
StartPage 1159
SubjectTerms Accuracy
adaptive control
approximate dynamic programming
Approximation algorithms
Data centers
Dynamic scheduling
Heuristic algorithms
In dependent micro-network
Machine learning
Optimal scheduling
optimal scheduling algorithm
optimized scheduling
Power system stability
Scheduling
Stability analysis
Title Research on Adaptive Control and Optimal Scheduling Algorithm Under Mixed Energy Architecture of Data Center
URI https://ieeexplore.ieee.org/document/10761375
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYmACRBHf8sCa4thJbI9RaEUlKJXK0K1y4nOp1CZVSBE_H9v9AAYGNsuyo8jPyZ3P790hdAdGUCA5CbQ0EERMyyB3KVxDUmgSgd3RxiP9xAcDMR7L4Uas7rUwAODJZ9BxTX-Xr6ti5UJl9gu3h27G4320z3myFmvtAiqMksgO2CQWDYm872f9UZZ2Exf3tCdBGnW2D_hVSsVbkt7RP9_hGLW_NXl4uLM2J2gPylM03xLncFXiVKul-3nhbE0_x6rU-MV2LdQcjyw42rHOpzidT6t61rwtsC96hJ9nn6Bx14sAcfrjYgFXBj-oRmEXAoa6jUa97mv2GGzqJwQzGTaBMBQibY2UiPPchImhEihLCJMm1gIsDkLIwvobRRTH3HAdCqNj4HZazgrFzlCrrEo4R5hqGanE-uGa5NaB4yJnxrpqUWwSpgrOL1DbLdRkuU6QMdmu0eUf_Vfo0MHhaBeUX6NWU6_gBh0UH83svb71sH4BnYujyw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG4UTfSkRoy_7cHrsGu7tT0ShEAEJIEDN7Ktr0gCG5nD-Ofbjh_qwYO3pmmXpV-39_r6fe8h9AhGUiAx8bQy4HGmlRe7FK4-STThYHe0KZHuin5fjsdqsBGrl1oYACjJZ1BzzfIuX2fJyoXK7BduD91MBPvoIOCckrVcaxdSYZRwO2STWtQn6qnT6Awb9WboIp_2LEh5bfuIX8VUSlvSOvnnW5yi6rcqDw929uYM7UF6juZb6hzOUlzX0dL9vnBjTUDHUarxq-1aRHM8tPBoxzuf4vp8muWz4m2By7JHuDf7BI2bpQwQ139cLeDM4OeoiLALAkNeRcNWc9Roe5sKCt5M-YUnDQWurZmSQRwbPzRUAWUhYcoEWoJFQkqVWI8j4UEgjNC-NDoAYafFLInYBaqkWQqXCFOteBRaT1yT2LpwQsbMWGeNByZkUSLEFaq6hZos1ykyJts1uv6j_wEdtUe97qTb6b_coGMHjSNhUHGLKkW-gjt0mHwUs_f8voT4C1EjpxI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Information+Systems+and+Computer+Aided+Education+%28Online%29&rft.atitle=Research+on+Adaptive+Control+and+Optimal+Scheduling+Algorithm+Under+Mixed+Energy+Architecture+of+Data+Center&rft.au=Zhang%2C+Wancai&rft.au=Xia%2C+Xuwei&rft.au=Zhang%2C+Nan&rft.au=Yang%2C+Wenqing&rft.date=2024-09-27&rft.pub=IEEE&rft.eissn=2770-663X&rft.spage=1159&rft.epage=1164&rft_id=info:doi/10.1109%2FICISCAE62304.2024.10761375&rft.externalDocID=10761375