Design and Application of Intelligent Work Stress Assessment System Based on Machine Learning
Aiming at the problems such as inaccurate evaluation of teachers in the traditional job stress evaluation system, this paper uses deep neural network algorithm to design an intelligent job stress evaluation system based on machine learning. This paper first introduces the main module division of the...
Gespeichert in:
| Veröffentlicht in: | 2024 Second International Conference on Data Science and Information System (ICDSIS) S. 1 - 4 |
|---|---|
| Hauptverfasser: | , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
17.05.2024
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Aiming at the problems such as inaccurate evaluation of teachers in the traditional job stress evaluation system, this paper uses deep neural network algorithm to design an intelligent job stress evaluation system based on machine learning. This paper first introduces the main module division of the system, and then describes the data preparation and the construction and training process of the deep neural network algorithm model. Finally, the performance of the system designed in this paper is explored through comparative experiments. The experimental results show that the average accuracy of the system is 95.92 \%, the recall rate is 90.48 \%, and the prediction is 85.36 \%, which is much higher than the performance of the traditional work stress evaluation system. Therefore, the system designed in this paper is helpful to solve the problems caused by teachers' work pressure. |
|---|---|
| AbstractList | Aiming at the problems such as inaccurate evaluation of teachers in the traditional job stress evaluation system, this paper uses deep neural network algorithm to design an intelligent job stress evaluation system based on machine learning. This paper first introduces the main module division of the system, and then describes the data preparation and the construction and training process of the deep neural network algorithm model. Finally, the performance of the system designed in this paper is explored through comparative experiments. The experimental results show that the average accuracy of the system is 95.92 \%, the recall rate is 90.48 \%, and the prediction is 85.36 \%, which is much higher than the performance of the traditional work stress evaluation system. Therefore, the system designed in this paper is helpful to solve the problems caused by teachers' work pressure. |
| Author | He, Haiping Yang, Yi |
| Author_xml | – sequence: 1 givenname: Haiping surname: He fullname: He, Haiping email: t.thornhill@clasnet.sunyocc.edu organization: SHNU,The College of Information Mechanical and Electrical Engineering,Shanghai,China – sequence: 2 givenname: Yi surname: Yang fullname: Yang, Yi email: 995132670@qq.com organization: SHNU,The College of Information Mechanical and Electrical Engineering,Shanghai,China |
| BookMark | eNo1j8FOhDAURWuiCx3nD1zUDwDbQku7REZHEowLJnFlJqV9xUYohLKZv3eMujrJTc5Nzg26DFMAhO4pSSkl6qGudm3dCkoKkjLC8pQSrvKMswu0VYWSGSeZpELwa_Sxg-j7gHWwuJznwRu9-ingyeE6rDAMvoew4vdp-cLtukCMuIzxjPFnbk9xhRE_6ggWn61XbT59ANyAXoIP_S26cnqIsP3jBh2enw7VS9K87euqbBKv6JpIK1WhCZEUlKNcMZkDZ4UxTgFocDw3rgAitdVCGOGYEl1ns45BZ00ONtugu99bDwDHefGjXk7H_-jsGxN-VC4 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICDSIS61070.2024.10594352 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350381665 |
| EndPage | 4 |
| ExternalDocumentID | 10594352 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i91t-8d897a0081e9f159284e527ccf9eeaef54cf7e08ada66c6f296bbd3b2ebdc4ed3 |
| IEDL.DBID | RIE |
| IngestDate | Wed Jul 24 06:48:27 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i91t-8d897a0081e9f159284e527ccf9eeaef54cf7e08ada66c6f296bbd3b2ebdc4ed3 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_10594352 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-May-17 |
| PublicationDateYYYYMMDD | 2024-05-17 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 Second International Conference on Data Science and Information System (ICDSIS) |
| PublicationTitleAbbrev | ICDSIS |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8700047 |
| Snippet | Aiming at the problems such as inaccurate evaluation of teachers in the traditional job stress evaluation system, this paper uses deep neural network algorithm... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Artificial neural networks Data models Deep Neural Network Algorithm Feature Extraction Intelligent Work Stress Evaluation System Machine learning Machine learning algorithms Prediction algorithms Training |
| Title | Design and Application of Intelligent Work Stress Assessment System Based on Machine Learning |
| URI | https://ieeexplore.ieee.org/document/10594352 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aRDypWPGbEbym7WY_sjnW1mJBS6FFepGSnUykl1bq1t9vkm5bPHjwFkJCIAN5L5l5L4w9JFLERkfECTXyxArkeWE0z7SNFAkqMPhsv73IwSCfTNSwEqsHLQwRheIzavhmyOWbBa78U1nTcwEH7-7E3ZdSrsVah-y-8s1s9jvdUX_k-IBsuYufSBqb8b9-TgnA0Tv-55InrL6T4MFwCy6nbI_mZ-y9G-otwN3-ob3LPMPCQn9rrVmCfwCHURCBQHvrvAlrc3J4dLhlwM16DXWUBJXF6kedjXtP484zr_5H4DMVlTw3uZLaYzop61iJAxpKhUS0ikiTTRO0klq5NjrLMLNCZUVh4sIFwGBCJj5ntfliThcMUiPyljIO2lEm1rG-WCrEQnl-pWKKLlndb830c-2AMd3sytUf_dfsyAfAZ9kjecNq5XJFt-wAv8vZ1_IuxO0H3TCdFw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0MGvWkRozf1sTrAtvtbrdHBAkbgZBADBdDutOp4QIGF3-_bVkgHjx4a5o0TTpJ32tn3htCnrhgkVYhBggKAm4YBGmuVZAoE0pkmIP32X7ricEgnUzksBSrey0MIvriM6y5oc_l6wWs3FdZ3XEBC-_2xt2POWfhWq51SB5L58x61mqPspFlBKJhn36M1zYrfvVO8dDROfnnpqekuhPh0eEWXs7IHs7PyXvbV1xQ-_6nzV3umS4MzbbmmgV1X-B05GUgtLn13qRre3L6bJFLU7uq7yspkZYmqx9VMu68jFvdoOyQEMxkWASpTqVQDtVRGstLLNRgzASAkYgKTczBCGykSqskgcQwmeS5jnIbAg0cdXRBKvPFHC8JjTVLG1JbcAfBjeV9kZAAuXQMS0YYXpGqO5rp59oDY7o5les_5h_IUXfc70172eD1hhy7YLiceyhuSaVYrvCOHMB3Mfta3vsY_gA3CaBe |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+Second+International+Conference+on+Data+Science+and+Information+System+%28ICDSIS%29&rft.atitle=Design+and+Application+of+Intelligent+Work+Stress+Assessment+System+Based+on+Machine+Learning&rft.au=He%2C+Haiping&rft.au=Yang%2C+Yi&rft.date=2024-05-17&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FICDSIS61070.2024.10594352&rft.externalDocID=10594352 |