Design and Application of Intelligent Work Stress Assessment System Based on Machine Learning

Aiming at the problems such as inaccurate evaluation of teachers in the traditional job stress evaluation system, this paper uses deep neural network algorithm to design an intelligent job stress evaluation system based on machine learning. This paper first introduces the main module division of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2024 Second International Conference on Data Science and Information System (ICDSIS) S. 1 - 4
Hauptverfasser: He, Haiping, Yang, Yi
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 17.05.2024
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Aiming at the problems such as inaccurate evaluation of teachers in the traditional job stress evaluation system, this paper uses deep neural network algorithm to design an intelligent job stress evaluation system based on machine learning. This paper first introduces the main module division of the system, and then describes the data preparation and the construction and training process of the deep neural network algorithm model. Finally, the performance of the system designed in this paper is explored through comparative experiments. The experimental results show that the average accuracy of the system is 95.92 \%, the recall rate is 90.48 \%, and the prediction is 85.36 \%, which is much higher than the performance of the traditional work stress evaluation system. Therefore, the system designed in this paper is helpful to solve the problems caused by teachers' work pressure.
AbstractList Aiming at the problems such as inaccurate evaluation of teachers in the traditional job stress evaluation system, this paper uses deep neural network algorithm to design an intelligent job stress evaluation system based on machine learning. This paper first introduces the main module division of the system, and then describes the data preparation and the construction and training process of the deep neural network algorithm model. Finally, the performance of the system designed in this paper is explored through comparative experiments. The experimental results show that the average accuracy of the system is 95.92 \%, the recall rate is 90.48 \%, and the prediction is 85.36 \%, which is much higher than the performance of the traditional work stress evaluation system. Therefore, the system designed in this paper is helpful to solve the problems caused by teachers' work pressure.
Author He, Haiping
Yang, Yi
Author_xml – sequence: 1
  givenname: Haiping
  surname: He
  fullname: He, Haiping
  email: t.thornhill@clasnet.sunyocc.edu
  organization: SHNU,The College of Information Mechanical and Electrical Engineering,Shanghai,China
– sequence: 2
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
  email: 995132670@qq.com
  organization: SHNU,The College of Information Mechanical and Electrical Engineering,Shanghai,China
BookMark eNo1j8FOhDAURWuiCx3nD1zUDwDbQku7REZHEowLJnFlJqV9xUYohLKZv3eMujrJTc5Nzg26DFMAhO4pSSkl6qGudm3dCkoKkjLC8pQSrvKMswu0VYWSGSeZpELwa_Sxg-j7gHWwuJznwRu9-ingyeE6rDAMvoew4vdp-cLtukCMuIzxjPFnbk9xhRE_6ggWn61XbT59ANyAXoIP_S26cnqIsP3jBh2enw7VS9K87euqbBKv6JpIK1WhCZEUlKNcMZkDZ4UxTgFocDw3rgAitdVCGOGYEl1ns45BZ00ONtugu99bDwDHefGjXk7H_-jsGxN-VC4
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICDSIS61070.2024.10594352
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350381665
EndPage 4
ExternalDocumentID 10594352
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-8d897a0081e9f159284e527ccf9eeaef54cf7e08ada66c6f296bbd3b2ebdc4ed3
IEDL.DBID RIE
IngestDate Wed Jul 24 06:48:27 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-8d897a0081e9f159284e527ccf9eeaef54cf7e08ada66c6f296bbd3b2ebdc4ed3
PageCount 4
ParticipantIDs ieee_primary_10594352
PublicationCentury 2000
PublicationDate 2024-May-17
PublicationDateYYYYMMDD 2024-05-17
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-17
  day: 17
PublicationDecade 2020
PublicationTitle 2024 Second International Conference on Data Science and Information System (ICDSIS)
PublicationTitleAbbrev ICDSIS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8700047
Snippet Aiming at the problems such as inaccurate evaluation of teachers in the traditional job stress evaluation system, this paper uses deep neural network algorithm...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Artificial neural networks
Data models
Deep Neural Network Algorithm
Feature Extraction
Intelligent Work Stress Evaluation System
Machine learning
Machine learning algorithms
Prediction algorithms
Training
Title Design and Application of Intelligent Work Stress Assessment System Based on Machine Learning
URI https://ieeexplore.ieee.org/document/10594352
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1aRDypWPGbEbym7WY_sjnW1mJBS6FFepGSnUykl1bq1t9vkm5bPHjwFkJCIAN5L5l5L4w9JFLERkfECTXyxArkeWE0z7SNFAkqMPhsv73IwSCfTNSwEqsHLQwRheIzavhmyOWbBa78U1nTcwEH7-7E3ZdSrsVah-y-8s1s9jvdUX_k-IBsuYufSBqb8b9-TgnA0Tv-55InrL6T4MFwCy6nbI_mZ-y9G-otwN3-ob3LPMPCQn9rrVmCfwCHURCBQHvrvAlrc3J4dLhlwM16DXWUBJXF6kedjXtP484zr_5H4DMVlTw3uZLaYzop61iJAxpKhUS0ikiTTRO0klq5NjrLMLNCZUVh4sIFwGBCJj5ntfliThcMUiPyljIO2lEm1rG-WCrEQnl-pWKKLlndb830c-2AMd3sytUf_dfsyAfAZ9kjecNq5XJFt-wAv8vZ1_IuxO0H3TCdFw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0MGvWkRozf1sTrAtvtbrdHBAkbgZBADBdDutOp4QIGF3-_bVkgHjx4a5o0TTpJ32tn3htCnrhgkVYhBggKAm4YBGmuVZAoE0pkmIP32X7ricEgnUzksBSrey0MIvriM6y5oc_l6wWs3FdZ3XEBC-_2xt2POWfhWq51SB5L58x61mqPspFlBKJhn36M1zYrfvVO8dDROfnnpqekuhPh0eEWXs7IHs7PyXvbV1xQ-_6nzV3umS4MzbbmmgV1X-B05GUgtLn13qRre3L6bJFLU7uq7yspkZYmqx9VMu68jFvdoOyQEMxkWASpTqVQDtVRGstLLNRgzASAkYgKTczBCGykSqskgcQwmeS5jnIbAg0cdXRBKvPFHC8JjTVLG1JbcAfBjeV9kZAAuXQMS0YYXpGqO5rp59oDY7o5les_5h_IUXfc70172eD1hhy7YLiceyhuSaVYrvCOHMB3Mfta3vsY_gA3CaBe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+Second+International+Conference+on+Data+Science+and+Information+System+%28ICDSIS%29&rft.atitle=Design+and+Application+of+Intelligent+Work+Stress+Assessment+System+Based+on+Machine+Learning&rft.au=He%2C+Haiping&rft.au=Yang%2C+Yi&rft.date=2024-05-17&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FICDSIS61070.2024.10594352&rft.externalDocID=10594352