An IGD+ Indicator-Based Metric for Interactive Evolutionary Multi-Objective Optimization Algorithms

Interactive evolutionary multi-objective optimization algorithms have received widespread research. The goal of these algorithms is to iteratively involve decision makers(DM) in the solution process, by providing preference information, the solution is guided to regions of interest. However, most in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Chinese Automation Congress (Online) s. 7 - 12
Hlavní autoři: Tian, Hao, Li, Fei, Zhou, Baiyu, Yang, Yujie, Huang, Xun
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.11.2024
Témata:
ISSN:2688-0938
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Interactive evolutionary multi-objective optimization algorithms have received widespread research. The goal of these algorithms is to iteratively involve decision makers(DM) in the solution process, by providing preference information, the solution is guided to regions of interest. However, most indicators are designed to assess how well algorithms approximate the entire Pareto optimal front. In order to assess the quality of the preferred solution sets obtained by interactive algorithms, this paper introduces a novel performance indicator based on the modified inverted generational distance (IGD + ). The indicator is examined using interactive evolutionary methods and demonstrating its capability to evaluate the performance of interactive algorithms.
ISSN:2688-0938
DOI:10.1109/CAC63892.2024.10865357