Implementation of Support Vector Machine Algorithm in a Real-time BLDC Motor Bearing Fault Classification with Discrete Wavelet Transform as Feature Extractor

Brushless DC (BLDC) Motors are integral to industrial operations. Continuous motor usage can lead to various faults with significant consequences if left unaddressed. These faults may impact the motor, its surrounding system, disrupt economic activities, and potentially result in catastrophic failur...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2024 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET) s. 1 - 6
Hlavní autoři: Masangkay, Shan Joshua Raym C., Mendigoria, Lester Joseph B., Reyes, Ivan Ross M., Ostia, Conrado F.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 26.08.2024
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Brushless DC (BLDC) Motors are integral to industrial operations. Continuous motor usage can lead to various faults with significant consequences if left unaddressed. These faults may impact the motor, its surrounding system, disrupt economic activities, and potentially result in catastrophic failures. This study introduces a methodology combining Support Vector Machine (SVM) for feature classification with Discrete Wavelet Transform (DWT) for feature extraction. Through machine learning techniques, voltage signals from multiple BLDC motor samples with diverse faults were examined. Performance metrics, including precision, recall, accuracy, and F-1 scores, were calculated to evaluate the algorithm's effectiveness. The Support Vector Machine, trained alongside the Discrete Wavelet Transform, achieved an accuracy of 96.98 percent during validation and 90.37 percent during real-time testing. These results highlight the practical application of the proposed algorithm for efficient motor fault diagnosis.
AbstractList Brushless DC (BLDC) Motors are integral to industrial operations. Continuous motor usage can lead to various faults with significant consequences if left unaddressed. These faults may impact the motor, its surrounding system, disrupt economic activities, and potentially result in catastrophic failures. This study introduces a methodology combining Support Vector Machine (SVM) for feature classification with Discrete Wavelet Transform (DWT) for feature extraction. Through machine learning techniques, voltage signals from multiple BLDC motor samples with diverse faults were examined. Performance metrics, including precision, recall, accuracy, and F-1 scores, were calculated to evaluate the algorithm's effectiveness. The Support Vector Machine, trained alongside the Discrete Wavelet Transform, achieved an accuracy of 96.98 percent during validation and 90.37 percent during real-time testing. These results highlight the practical application of the proposed algorithm for efficient motor fault diagnosis.
Author Reyes, Ivan Ross M.
Ostia, Conrado F.
Masangkay, Shan Joshua Raym C.
Mendigoria, Lester Joseph B.
Author_xml – sequence: 1
  givenname: Shan Joshua Raym C.
  surname: Masangkay
  fullname: Masangkay, Shan Joshua Raym C.
  email: sjrcmasangkay@mymail.mapua.edu.ph
  organization: School of Electrical, Electronics, and Computer Engineering, Mapúa University,Manila,Philippines
– sequence: 2
  givenname: Lester Joseph B.
  surname: Mendigoria
  fullname: Mendigoria, Lester Joseph B.
  email: ljbmendigoria@mymail.mapua.edu.ph
  organization: School of Electrical, Electronics, and Computer Engineering, Mapúa University,Manila,Philippines
– sequence: 3
  givenname: Ivan Ross M.
  surname: Reyes
  fullname: Reyes, Ivan Ross M.
  email: irmreyes@mymail.mapua.edu.ph
  organization: School of Electrical, Electronics, and Computer Engineering, Mapúa University,Manila,Philippines
– sequence: 4
  givenname: Conrado F.
  surname: Ostia
  fullname: Ostia, Conrado F.
  email: cfostia@mapua.edu.ph
  organization: School of Electrical, Electronics, and Computer Engineering, Mapúa University,Manila,Philippines
BookMark eNo1kMlOw0AQRI0EBwj5Aw4t7g6zeJtjVrCUCAksOEbtcTsZyfZY4wnLz_CtJAqc6lL1SlU3wWVnOwqCe84mnDP1kOfzab4sEiFjMRFMRBPOUqFUJC-CsUpVJmMmM5UocR385G3fUEudR29sB7aG10PfW-fhjbS3Djao96YjmDY764zft2A6QHghbEJvWoLZejGHjT15Z4TOdDtY4aHxMG9wGExt9Bn9eQzDwgzakSd4xw9qyEPhsBtq61rAAVaE_uAIll_e4an9NriqsRlo_KejoFgti_lTuH5-PK5ch0ZxH0YZyjSTJRclZQxLzZI6LStFSVzFjDhiypM05aVIeK2Z1GVVociwZLXORBTLUXB3xhoi2vbOtOi-t_-vyV-n_Wto
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IICAIET62352.2024.10729943
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350389692
EndPage 6
ExternalDocumentID 10729943
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-48a3783b12be80abc06f7bd9e65d50e1aa716771b261fc03cbdda28ab0fc82453
IEDL.DBID RIE
IngestDate Wed Nov 06 05:53:29 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-48a3783b12be80abc06f7bd9e65d50e1aa716771b261fc03cbdda28ab0fc82453
PageCount 6
ParticipantIDs ieee_primary_10729943
PublicationCentury 2000
PublicationDate 2024-Aug.-26
PublicationDateYYYYMMDD 2024-08-26
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-Aug.-26
  day: 26
PublicationDecade 2020
PublicationTitle 2024 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)
PublicationTitleAbbrev IICAIET
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8804454
Snippet Brushless DC (BLDC) Motors are integral to industrial operations. Continuous motor usage can lead to various faults with significant consequences if left...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Arduino Programming
Brushless DC Motor
Classification algorithms
Discrete Wavelet Transform
Discrete wavelet transforms
Fault diagnosis
Feature Classification
Feature extraction
Haar wavelet
MATLAB Simulink
Motor Fault Diagnosis
Motors
Real-time bearing fault diagnosis
Real-time systems
Support Vector Machine
Support vector machines
Testing
Wavelet analysis
Title Implementation of Support Vector Machine Algorithm in a Real-time BLDC Motor Bearing Fault Classification with Discrete Wavelet Transform as Feature Extractor
URI https://ieeexplore.ieee.org/document/10729943
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoxcAEiCK-dQNripM4cTL2U1SiVYUi6FbZjg2R2gSlCeLX8Fux3RTEwMBmRbYj2U7u3fnePYRumVLMJ4FyPJ9Th9BAOnEUcEcpIginXiCJsmITdDaLFot43pDVLRdGSmmTz2TXNO1dflqI2oTK9BeuoWBM_BZqURpuyVpNIVEXx3eTyaA3GSXaoAeGYuWR7m7AL-kUaznGh_985xHq_HDwYP5tXY7RnsxP0Kct5rtu-EI5FAqMLKeG0PBkw-8wtcmREnqrl0L7_a9ryHJg8KjxoGN05KH_MBzAtDB9-_qU67lhzOpVBVYe0yQObac2AVoYZvqvomE1PDMjUFFBssO5wDZg4GNdShh9VKWV7emgZDxKBvdOo7DgZLFbOSRiPo187npcRphxgUNFeRrLMEgDLF3GtDdFqcu1m6UE9gVPU-ZFjGMlIo8E_ilq50UuzxAIjHnqMkOtT4kiKpY00uBSUeOB4TQ8Rx2ztsu3bQ2N5W5ZL_54fokOzA6a6K0XXqF2VdbyGu2L9yrblDd2578ADyC0EA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwFG50muhJjTP-9h28MgsUCsf9jMRtWQzR3ZYWWl2ygWFg_Gv8W207pvHgwVtD2pK0hfe91_e9D6FbJiVziSctx-XUItQTVhh43JKSJIRTxxNEGrEJOh4H02k4qcnqhgsjhDDJZ6Klm-YuP82TSofK1BeuoGBI3G20o6WzarpWXUrUxuFdFHXbUT9WJt3TJCuHtDZDfomnGNsxOPjnWw9R84eFB5Nv-3KEtkR2jD5NOd9lzRjKIJeghTkViIYnE4CHkUmPFNBevOTK839dwjwDBo8KEVpaSR46w14XRrnu21HnXM0NA1YtSjACmTp1aD21DtFCb67-KwpYwzPTEhUlxBukC2wFGkBWhYD-R1kY4Z4migf9uHtv1RoL1jy0S4sEzKWBy22HiwAznmBfUp6GwvdSDwubMeVPUWpz5WjJBLsJT1PmBIxjmQQO8dwT1MjyTJwiSDDmqc00uT4lkshQ0EDBS0m1D4ZT_ww19drO3tZVNGabZT3_4_kN2ruPR8PZMBo_XKB9vZs6luv4l6hRFpW4QrvJezlfFdfmFHwBl1a3WQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+IEEE+International+Conference+on+Artificial+Intelligence+in+Engineering+and+Technology+%28IICAIET%29&rft.atitle=Implementation+of+Support+Vector+Machine+Algorithm+in+a+Real-time+BLDC+Motor+Bearing+Fault+Classification+with+Discrete+Wavelet+Transform+as+Feature+Extractor&rft.au=Masangkay%2C+Shan+Joshua+Raym+C.&rft.au=Mendigoria%2C+Lester+Joseph+B.&rft.au=Reyes%2C+Ivan+Ross+M.&rft.au=Ostia%2C+Conrado+F.&rft.date=2024-08-26&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FIICAIET62352.2024.10729943&rft.externalDocID=10729943