ESO-Based Data Driven Set-Point Learning Control for Nonlinear batch Processes with PD-Type Feedback Control Structure Subject to Nonrepetitive Uncertainties

In this paper, an extended state observer (ESO) based data-driven set-point learning control (DDSPLC) scheme is proposed for nonlinear batch processes configured with an inherent PD-type control loop, so as to actively suppress the adverse effect of nonrepetitive external disturbances and nonidentic...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Data Driven Control and Learning Systems Conference (Online) s. 2082 - 2088
Hlavní autori: Ahmad, Naseem, Hao, Shoulin, Liu, Tao, Gong, Yihui, Zhang, Jiyan, Wang, Haixia, Zhu, Yong
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 17.05.2024
Predmet:
ISSN:2767-9861
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, an extended state observer (ESO) based data-driven set-point learning control (DDSPLC) scheme is proposed for nonlinear batch processes configured with an inherent PD-type control loop, so as to actively suppress the adverse effect of nonrepetitive external disturbances and nonidentical initial resetting conditions, by only utilizing the available process input/output data. The controlled process is firstly reformulated as an iterative dynamic linearization data model (IDLDM) with an extra generalized disturbance, where the unknown pseudo partial derivative and the generalized disturbance are, respectively, estimated by a projection-like algorithm and iterative ESO along the batch direction. By virtue of the estimated PPD and generalized disturbance, a set-point learning updating law with adaptive learning gain is then developed to optimize the tracking performance from batch-to-batch, by tuning the set-point command of the closed-loop PD-type control. Robust convergence analysis for the established closed-loop learning system is analyzed rigorously. The effectiveness and superiority of the proposed scheme are verified by an illustrative example.
AbstractList In this paper, an extended state observer (ESO) based data-driven set-point learning control (DDSPLC) scheme is proposed for nonlinear batch processes configured with an inherent PD-type control loop, so as to actively suppress the adverse effect of nonrepetitive external disturbances and nonidentical initial resetting conditions, by only utilizing the available process input/output data. The controlled process is firstly reformulated as an iterative dynamic linearization data model (IDLDM) with an extra generalized disturbance, where the unknown pseudo partial derivative and the generalized disturbance are, respectively, estimated by a projection-like algorithm and iterative ESO along the batch direction. By virtue of the estimated PPD and generalized disturbance, a set-point learning updating law with adaptive learning gain is then developed to optimize the tracking performance from batch-to-batch, by tuning the set-point command of the closed-loop PD-type control. Robust convergence analysis for the established closed-loop learning system is analyzed rigorously. The effectiveness and superiority of the proposed scheme are verified by an illustrative example.
Author Hao, Shoulin
Zhang, Jiyan
Wang, Haixia
Ahmad, Naseem
Liu, Tao
Gong, Yihui
Zhu, Yong
Author_xml – sequence: 1
  givenname: Naseem
  surname: Ahmad
  fullname: Ahmad, Naseem
  organization: Dalian University of Technology,Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education,Dalian,China,116024
– sequence: 2
  givenname: Shoulin
  surname: Hao
  fullname: Hao, Shoulin
  organization: Dalian University of Technology,Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education,Dalian,China,116024
– sequence: 3
  givenname: Tao
  surname: Liu
  fullname: Liu, Tao
  email: liurouter@ieee.org
  organization: Dalian University of Technology,Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education,Dalian,China,116024
– sequence: 4
  givenname: Yihui
  surname: Gong
  fullname: Gong, Yihui
  organization: Dalian University of Technology,Key Laboratory of Intelligent Control and Optimization for Industrial Equipment of Ministry of Education,Dalian,China,116024
– sequence: 5
  givenname: Jiyan
  surname: Zhang
  fullname: Zhang, Jiyan
  organization: Institute of Advanced Control Technology, Dalian University of Technology,Dalian,P. R. China,116024
– sequence: 6
  givenname: Haixia
  surname: Wang
  fullname: Wang, Haixia
  organization: Institute of Advanced Control Technology, Dalian University of Technology,Dalian,P. R. China,116024
– sequence: 7
  givenname: Yong
  surname: Zhu
  fullname: Zhu, Yong
  organization: School of Biomedical Engineering, Dalian University of Technology,Dalian,P. R. China,116024
BookMark eNo9kEtOwzAYhA0CiVJ6Axa-QIrt1E68hIQCUkQrpawrx_4DLsWubBfUw3BXgnisRqPRzCfNOTpx3gFCmJIppURe1XXVtIIKxqaMsNmUEkGE4PIITWQhy5yTfEiL2TEasUIUmSwFPUOTGDeEEMZpLmQ-Qp-37SK7UREMrlVSuA72HRxuIWVLb13CDajgrHvGlXcp-C3ufcCP3m2tGxLcqaRf8DJ4DTFCxB82DbbOVocd4DmA6ZR-_e-2Kex12gfA7b7bgE44-e-xADtINg1o_OQ0hKQGtIV4gU57tY0w-dUxWs1vV9V91izuHqrrJrOSpmxWysKUwIQBTXrRGdWTwnAORd93XOelkUprIoXqJEDPTC6AdpyUlHIg0uRjdPkzawFgvQv2TYXD-u_Q_AvCBHBs
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/DDCLS61622.2024.10606659
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350361674
EISSN 2767-9861
EndPage 2088
ExternalDocumentID 10606659
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i91t-4897d8e26dec0f6bdaf07d55e7ffb5c38d9acc096ab9eef2d36e1b508115e09d3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:33:51 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-4897d8e26dec0f6bdaf07d55e7ffb5c38d9acc096ab9eef2d36e1b508115e09d3
PageCount 7
ParticipantIDs ieee_primary_10606659
PublicationCentury 2000
PublicationDate 2024-May-17
PublicationDateYYYYMMDD 2024-05-17
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-17
  day: 17
PublicationDecade 2020
PublicationTitle Data Driven Control and Learning Systems Conference (Online)
PublicationTitleAbbrev DDCLS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002513693
Score 1.870406
Snippet In this paper, an extended state observer (ESO) based data-driven set-point learning control (DDSPLC) scheme is proposed for nonlinear batch processes...
SourceID ieee
SourceType Publisher
StartPage 2082
SubjectTerms Batch production systems
Data-driven set-point learning control
Heuristic algorithms
Iterative algorithms
iterative extended state observer
Learning systems
nonlinear batch processes
nonrepetitive uncertainties
Observers
PD-type feedback control
Process control
Uncertainty
Title ESO-Based Data Driven Set-Point Learning Control for Nonlinear batch Processes with PD-Type Feedback Control Structure Subject to Nonrepetitive Uncertainties
URI https://ieeexplore.ieee.org/document/10606659
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVoxYETIIrYNQeuLlnt-ErTigMqlVqk3iovE6iQ0ipN-Rv-lXG6IA4cuEWWvMSJZ_N7M4zdZ0HhUITIA2ElT5xRXHkwTRIGGdow1rYwTbEJORxm06kabcnqDRcGERvwGXb9Y3OX7xZ27UNldMK9uZ2qFmtJKTdkrX1AhRR1LFS8Q-sE6iHPe89jEYrIE66ipLvr_quQSqNHBsf_XMEJ6_ww8mC01zWn7ADLM_bVH7_wR1JDDnJda8grL7pgjDUfLeZlDdvkqW_Q2wDSgSxUGG6SY-gKDInhd9hSBXAFPiYLo5x73xQGNJXR9mPfd9xkml1XCCRsfPQG6oUfrMKlZ6rR1PBKy2wQBj5La4dNBv1J74lvyy3wuQprnmRKugwj4dAGhTBOF4F0aYqyKExq48wpbS15PNooxCJyscDQkH1HNiUGysXnrF0uSrxgkKFGGiSNfYgkS4wuFGlBQb5Zasmis5es47d2ttwk1JjtdvXqj_ZrduQ_oL-0D-UNa9P74i07tJ_1fFXdNb_BNyCAtwc
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgIMEJEEXszIGrS1YnvtK0AlFKpRapt8rLBCqktkpT_oZ_ZZwuiAMHblGkjB07meV53gxjt6mXWxQ-ck-YhEdWSy5dMk3keykaP1Qm11WziaTbTYdD2VuR1SsuDCJWyWfYcJfVWb6dmoWDyugPd-52LLfZThxFgb-ka20gFTLVoZDhOl_Hk3dZ1uz0hS8CR7kKosZawK9WKpUlaR_8cw6HrP7DyYPextocsS2cHLOvVv-F35MhspCpUkFWOOUFfSx5bzqelLAqn_oGzWVKOpCPCt1leQxVgCZF_A4rsgDOwaGy0Mu4i06hTUNpZT42z_arWrOLAoHUjcNvoJw6YQXOHFeNhoZXmmaVY-DqtNbZoN0aNB_4quECH0u_5FEqE5tiICwaLxfaqtxLbBxjkuc6NmFqpTKGYh6lJWIe2FCgr8nDI68SPWnDE1abTCd4yiBFhSQkDh1IkkZa5ZLsoKDoLDbk05kzVndLO5otS2qM1qt6_sf9G7b3MHjujDqP3acLtu820x3h-8klq9G74xXbNZ_leF5cV5_EN8yiuk4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Data+Driven+Control+and+Learning+Systems+Conference+%28Online%29&rft.atitle=ESO-Based+Data+Driven+Set-Point+Learning+Control+for+Nonlinear+batch+Processes+with+PD-Type+Feedback+Control+Structure+Subject+to+Nonrepetitive+Uncertainties&rft.au=Ahmad%2C+Naseem&rft.au=Hao%2C+Shoulin&rft.au=Liu%2C+Tao&rft.au=Gong%2C+Yihui&rft.date=2024-05-17&rft.pub=IEEE&rft.eissn=2767-9861&rft.spage=2082&rft.epage=2088&rft_id=info:doi/10.1109%2FDDCLS61622.2024.10606659&rft.externalDocID=10606659