Multi-Period Day-Ahead Storage Scheduling with Uncertain Inflow

With the widespread integration of renewable energy into the power grid, the inherent variability and intermittency of renewable sources can compromise grid reliability and security. Traditional deterministic approaches fall short in addressing this challenge, while uncertainty optimization methods...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2024 6th International Conference on Electronic Engineering and Informatics (EEI) s. 1261 - 1266
Hlavní autoři: Tang, Yusi, Zhou, Bo
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 28.06.2024
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With the widespread integration of renewable energy into the power grid, the inherent variability and intermittency of renewable sources can compromise grid reliability and security. Traditional deterministic approaches fall short in addressing this challenge, while uncertainty optimization methods offer a more effective solution. This paper addresses the water inflow uncertainty in the day-ahead storage scheduling. By leveraging the multiplicative autoregressive method, a multi-period stochastic programming model is established to minimize the expected daily operating cost. Then, a stochastic dual dynamic programming algorithm is devised to find the optimal generation dispatching strategy. Finally, case studies on the IEEE 30-bus systems are conducted to demonstrate the effectiveness of the proposed model and method.
AbstractList With the widespread integration of renewable energy into the power grid, the inherent variability and intermittency of renewable sources can compromise grid reliability and security. Traditional deterministic approaches fall short in addressing this challenge, while uncertainty optimization methods offer a more effective solution. This paper addresses the water inflow uncertainty in the day-ahead storage scheduling. By leveraging the multiplicative autoregressive method, a multi-period stochastic programming model is established to minimize the expected daily operating cost. Then, a stochastic dual dynamic programming algorithm is devised to find the optimal generation dispatching strategy. Finally, case studies on the IEEE 30-bus systems are conducted to demonstrate the effectiveness of the proposed model and method.
Author Tang, Yusi
Zhou, Bo
Author_xml – sequence: 1
  givenname: Yusi
  surname: Tang
  fullname: Tang, Yusi
  email: ystang@mails.cqjtu.edu.cn
  organization: School of Mathematics and Statistics, Chongqing Jiaotong University,Chongqing,China,400074
– sequence: 2
  givenname: Bo
  surname: Zhou
  fullname: Zhou, Bo
  email: bzhou@cqjtu.edu.cn
  organization: School of Mathematics and Statistics, Chongqing Jiaotong University,Chongqing,China,400074
BookMark eNo1z09LwzAYgPEIetC5byCSL9Ca_2lOMmadhckGm-fxNnmzBmoqtWPs23tQT8_tB88duc5DRkIeOSs5Z-6prhsjmZWlYEKVnBlnhLFXZO6sq6RmUkvt1C15fj_1Uyq2OKYh0Be4FIsOIdDdNIxwRLrzHYZTn_KRntPU0Y_scZwgZdrk2A_ne3ITof_G-V9nZP9a75dvxXqzapaLdZEcnwqlWx9Rg6mUCB6UVrZlreMuMG5sAKaNFzFY70Ao8DpUKoqqiqhc5Aq4nJGHXzYh4uFrTJ8wXg7_W_IHTnFHDg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/EEI63073.2024.10696267
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350353594
EndPage 1266
ExternalDocumentID 10696267
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-45bcfe5a6842dca4547b0b919d0167da056c2fd7c9a24ac5d84f288fe49f14a13
IEDL.DBID RIE
IngestDate Wed Oct 16 05:58:48 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-45bcfe5a6842dca4547b0b919d0167da056c2fd7c9a24ac5d84f288fe49f14a13
PageCount 6
ParticipantIDs ieee_primary_10696267
PublicationCentury 2000
PublicationDate 2024-June-28
PublicationDateYYYYMMDD 2024-06-28
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-June-28
  day: 28
PublicationDecade 2020
PublicationTitle 2024 6th International Conference on Electronic Engineering and Informatics (EEI)
PublicationTitleAbbrev EEI
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8745875
Snippet With the widespread integration of renewable energy into the power grid, the inherent variability and intermittency of renewable sources can compromise grid...
SourceID ieee
SourceType Publisher
StartPage 1261
SubjectTerms Costs
Dynamic programming
Heuristic algorithms
Multi-period day-ahead storage scheduling
Programming
Reliability
Renewable energy sources
Resource management
Security
Stochastic dual dynamic programming algorithm
Stochastic processes
Un-certain inflow
Uncertainty
Title Multi-Period Day-Ahead Storage Scheduling with Uncertain Inflow
URI https://ieeexplore.ieee.org/document/10696267
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62ePCkYsU3OXhN3U2zyeYkoi0WpBRaobeSZCZSkF3pQ_Hfm6St4sGDtxBCQpLJTCbffBNCroPHYLGjHXPGKiZASWYldlgGskTJFWZZIgo_qcGgnEz0cENWT1wYREzBZ9iOxYTlQ-1W8aksnHCpwwVcNUhDKbkma21Yv3mmb7rdvowiG7w-Ltrbxr--TUlWo7f_z_EOSOuHf0eH35blkOxgdURuE1eWDYPI1EAfzCe7C4oU6Ch4zUEp0FFYfohx5S80Pq7S59BLgvtpv_Kv9UeLjHvd8f0j23x_wGY6XzJRWOexMBEoA2di4i2bWZ1riMwBMOHm4rgH5bThwrgCSuF5WXoU2ufC5J1j0qzqCk8IlSL4LRk31nAURoF2PqKVwmivPBT6lLTi5Kdv6wQX0-28z_6oPyd7cYljxBQvL0hzOV_hJdl178vZYn6VtuULv7OP7Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60CnpSseLbHLym7qbZZHMS0ZYWaym0Qm8lTynIrtSt4r83iVvFgwdvIYSEZCaPLzPfDMClRwzKtoXGWiqOqeEMK2bbODEst4xwmySRKDzgw2E-nYpRTVaPXBhrbXQ-s61QjLZ8U-pl-CrzO5wJ_wDn67ARUmfVdK2a95sm4qrT6bOgtB73EdpaNf-VOCXeG92df464C80fBh4afd8te7Bmi324jmxZPPJKUxp0Jz_wjT9KDRp73OyPBTT2AjDBs_wJhe9V9Oh7iQZ_1C_cc_nehEm3M7nt4ToBAp6LtMI0U9rZTAZTmdEyhN5SiRKpMIE7YKR_u2jiDNdCEip1ZnLqSJ47S4VLqUzbB9AoysIeAmLUI5eESCWJpZIboV2wV1IpHHcmE0fQDJOfvXyFuJit5n38R_0FbPUmD4PZoD-8P4HtsNzBf4rkp9CoFkt7Bpv6rZq_Ls6jiD4BcQWTNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+6th+International+Conference+on+Electronic+Engineering+and+Informatics+%28EEI%29&rft.atitle=Multi-Period+Day-Ahead+Storage+Scheduling+with+Uncertain+Inflow&rft.au=Tang%2C+Yusi&rft.au=Zhou%2C+Bo&rft.date=2024-06-28&rft.pub=IEEE&rft.spage=1261&rft.epage=1266&rft_id=info:doi/10.1109%2FEEI63073.2024.10696267&rft.externalDocID=10696267