Predictive Maintenance in Smart Grids with Long Short-Term Memory Networks (LSTM)

This research explores the application of Long Short-Term Memory Systems (LSTMs) and conventional machine learning calculations for prescient support in shrewd grids. Leveraging a differing dataset, the study compares the execution of these models, uncovering that the LSTM demonstration outperforms...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE) s. 1370 - 1375
Hlavní autoři: Goyal, Himanshu Rai, Almusawi, Muntather, Otero-Potosi, Santiago, Varshney, Neeraj, Sharma, Vishal, Rao, A Kakoli
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 09.05.2024
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This research explores the application of Long Short-Term Memory Systems (LSTMs) and conventional machine learning calculations for prescient support in shrewd grids. Leveraging a differing dataset, the study compares the execution of these models, uncovering that the LSTM demonstration outperforms conventional partners such as Random Forest, Support Vector Machine, as well as K-Nearest Neighbors. The LSTM's capacity to capture intricate worldly conditions in successive information contributes to its predominant precision, precision, recall, and F1 score in anticipating hardware disappointments and support needs. Comparative examinations highlight the transformative potential of LSTM systems in improving the unwavering quality and proficiency of prescient support in energetic keen framework situations. The study adjusts with current patterns in related writing, emphasizing the developing noticeable quality of profound learning procedures in tending to complex assignments inside the vitality segment. As savvy grids advance, joining progressed data-driven approaches gets to be basic, and this investigation underscores the urgent part of LSTMs in handling the challenges related to prescient maintenance. The discoveries not as it were contribute to the body of information within the field but also offer practical suggestions for the improvement of clever and flexible smart network frameworks.
AbstractList This research explores the application of Long Short-Term Memory Systems (LSTMs) and conventional machine learning calculations for prescient support in shrewd grids. Leveraging a differing dataset, the study compares the execution of these models, uncovering that the LSTM demonstration outperforms conventional partners such as Random Forest, Support Vector Machine, as well as K-Nearest Neighbors. The LSTM's capacity to capture intricate worldly conditions in successive information contributes to its predominant precision, precision, recall, and F1 score in anticipating hardware disappointments and support needs. Comparative examinations highlight the transformative potential of LSTM systems in improving the unwavering quality and proficiency of prescient support in energetic keen framework situations. The study adjusts with current patterns in related writing, emphasizing the developing noticeable quality of profound learning procedures in tending to complex assignments inside the vitality segment. As savvy grids advance, joining progressed data-driven approaches gets to be basic, and this investigation underscores the urgent part of LSTMs in handling the challenges related to prescient maintenance. The discoveries not as it were contribute to the body of information within the field but also offer practical suggestions for the improvement of clever and flexible smart network frameworks.
Author Otero-Potosi, Santiago
Rao, A Kakoli
Almusawi, Muntather
Varshney, Neeraj
Sharma, Vishal
Goyal, Himanshu Rai
Author_xml – sequence: 1
  givenname: Himanshu Rai
  surname: Goyal
  fullname: Goyal, Himanshu Rai
  email: himanshuraigoyal@geu.ac.in
  organization: Graphic Era Deemed to be University,Department of Computer Science & Engineering,Dehradun
– sequence: 2
  givenname: Muntather
  surname: Almusawi
  fullname: Almusawi, Muntather
  email: muntatheralmusawi@gmail.com
  organization: The Islamic University,Department of computers Techniques Engineering,Najaf,Iraq
– sequence: 3
  givenname: Santiago
  surname: Otero-Potosi
  fullname: Otero-Potosi, Santiago
  email: santiagoandres.otero@liceoaduanero.edu.ec
  organization: Instituto Superior Tecnológico Liceo Aduanero,Department of Investigation,Ibarra,Ecuador
– sequence: 4
  givenname: Neeraj
  surname: Varshney
  fullname: Varshney, Neeraj
  email: neeraj.varshney@gla.ac.in
  organization: GLA University,Department of Computer Engineering and Applications,Mathura
– sequence: 5
  givenname: Vishal
  surname: Sharma
  fullname: Sharma, Vishal
  email: vishal.3272@gmail.com
  organization: Lovely Professional University,Phagwara,India
– sequence: 6
  givenname: A Kakoli
  surname: Rao
  fullname: Rao, A Kakoli
  email: hodcse@liet.in
  organization: Lloyd Institute of Engineering & Technology,Greater Noida
BookMark eNo1j7tOwzAUQI0EA5T-AYNHGBKuffOwRxSVtlLCQ8leOc4NtaAOciyq_j1IwHS2o3Ou2LmfPDHGBaRCgL7fVtiuCgkgUwkySwXkGjHHM7bUpVaYAxaFyopL9voSaHA2ui_ijXE-kjfeEneetwcTIl8HN8z86OKe15N_4-1-CjHpKBx4Q4cpnPgTxeMU3md-W7ddc3fNLkbzMdPyjwvWPa66apPUz-tt9VAnTouYyLxEneEgBMpRkcqskkClEqbXEq0dirGX2vTKwoiDpVEYBRnSoDT0IAEX7OZX64ho9xncT-1p9z-K33wZTQw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IC3SE62002.2024.10593353
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350366846
EndPage 1375
ExternalDocumentID 10593353
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-2573943d1132f8e84c820e781ab923ccd6fb29ab8c0f3dcef1a8043ed890b0203
IEDL.DBID RIE
IngestDate Wed Jul 31 06:02:01 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-2573943d1132f8e84c820e781ab923ccd6fb29ab8c0f3dcef1a8043ed890b0203
PageCount 6
ParticipantIDs ieee_primary_10593353
PublicationCentury 2000
PublicationDate 2024-May-9
PublicationDateYYYYMMDD 2024-05-09
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-9
  day: 09
PublicationDecade 2020
PublicationTitle 2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE)
PublicationTitleAbbrev IC3SE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8771186
Snippet This research explores the application of Long Short-Term Memory Systems (LSTMs) and conventional machine learning calculations for prescient support in shrewd...
SourceID ieee
SourceType Publisher
StartPage 1370
SubjectTerms Energy Systems
Long short term memory
Long Short-Term Memory Networks (LSTMs)
Machine Learning
Maintenance
Nearest neighbor methods
Predictive Maintenance
Smart grids
Support vector machines
Transient analysis
Writing
Title Predictive Maintenance in Smart Grids with Long Short-Term Memory Networks (LSTM)
URI https://ieeexplore.ieee.org/document/10593353
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcAEiCLe8sAAg9ukdhx7rlpAaquiZOhWxfYFMpCiNEXi3-NLWxADA5tlWbJ09j3s--4-Qm5DGUuhY2BRLhUTxgRM2Shg3pXZLApNpHPXkE3E06maz_VsW6ze1MIAQAM-gy4Om1y-W9o1fpX1MBbgPOIt0opjuSnW2qFzAt17GvBkKBF14N99fdHdLf9FnNL4jdHhP3c8Ip2fCjw6-_Ytx2QPyhPyPKswrYIGik4ybPSA3TKAFiVN3vwVoA9V4VYUv1bpeFm-0OTVB9cs9caXThBR-0mnG9T3it6Nk3Ry3yHpaJgOHtmWEoEVOqyZ1y-uBXdID58rUMJ6Bw6xCjPjAzVrncxNX2dG2SDnzkIeZioQHJzSgcGc4ylpl8sSzgh1WkjlILShttiT0GRSgPMaakWc-zjknHRQHIv3TdOLxU4SF3_MX5IDFHqDBdRXpF1Xa7gm-_ajLlbVTXNUX4yRlRY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIMEEiCLeeGCAwW1SO4k9V4VWJFFRMnSr4kcgAylKWyT-PT63BTEwsFmWLEt3vofvvrtD6NYPo5CJyJCgDDlhUnqEq8Aj1pSpIvBlIErthk1EaconEzFeF6u7WhhjjAOfmQ4sXS5fz9QSQmVd8AUoDeg22gkY63mrcq0NPscT3VGfZoMQcAf259djnc2BX6NTnOV4OPjnnYeo_VODh8ff1uUIbZn6GD2PG0isgIrCSQGtHqBfhsFVjbM3-wjwY1PpOYbgKo5n9QvOXq17TXKrfnECmNpPnK5w33N8F2d5ct9G-cMg7w_JeigCqYS_IFbCqGBUw4D4khvOlDXhJuJ-Ia2rppQOS9kTheTKK6lWpvQL7jFqNBeehKzjCWrVs9qcIqwFC7k2vvKFgq6EsgiZ0VZGFYtK64mcoTaQY_q-ansx3VDi_I_9G7Q3zJN4Go_Spwu0DwxwyEBxiVqLZmmu0K76WFTz5tqx7Qt-tphd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Communication%2C+Computer+Sciences+and+Engineering+%28IC3SE%29&rft.atitle=Predictive+Maintenance+in+Smart+Grids+with+Long+Short-Term+Memory+Networks+%28LSTM%29&rft.au=Goyal%2C+Himanshu+Rai&rft.au=Almusawi%2C+Muntather&rft.au=Otero-Potosi%2C+Santiago&rft.au=Varshney%2C+Neeraj&rft.date=2024-05-09&rft.pub=IEEE&rft.spage=1370&rft.epage=1375&rft_id=info:doi/10.1109%2FIC3SE62002.2024.10593353&rft.externalDocID=10593353