Predictive Maintenance in Smart Grids with Long Short-Term Memory Networks (LSTM)
This research explores the application of Long Short-Term Memory Systems (LSTMs) and conventional machine learning calculations for prescient support in shrewd grids. Leveraging a differing dataset, the study compares the execution of these models, uncovering that the LSTM demonstration outperforms...
Uloženo v:
| Vydáno v: | 2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE) s. 1370 - 1375 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
09.05.2024
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This research explores the application of Long Short-Term Memory Systems (LSTMs) and conventional machine learning calculations for prescient support in shrewd grids. Leveraging a differing dataset, the study compares the execution of these models, uncovering that the LSTM demonstration outperforms conventional partners such as Random Forest, Support Vector Machine, as well as K-Nearest Neighbors. The LSTM's capacity to capture intricate worldly conditions in successive information contributes to its predominant precision, precision, recall, and F1 score in anticipating hardware disappointments and support needs. Comparative examinations highlight the transformative potential of LSTM systems in improving the unwavering quality and proficiency of prescient support in energetic keen framework situations. The study adjusts with current patterns in related writing, emphasizing the developing noticeable quality of profound learning procedures in tending to complex assignments inside the vitality segment. As savvy grids advance, joining progressed data-driven approaches gets to be basic, and this investigation underscores the urgent part of LSTMs in handling the challenges related to prescient maintenance. The discoveries not as it were contribute to the body of information within the field but also offer practical suggestions for the improvement of clever and flexible smart network frameworks. |
|---|---|
| AbstractList | This research explores the application of Long Short-Term Memory Systems (LSTMs) and conventional machine learning calculations for prescient support in shrewd grids. Leveraging a differing dataset, the study compares the execution of these models, uncovering that the LSTM demonstration outperforms conventional partners such as Random Forest, Support Vector Machine, as well as K-Nearest Neighbors. The LSTM's capacity to capture intricate worldly conditions in successive information contributes to its predominant precision, precision, recall, and F1 score in anticipating hardware disappointments and support needs. Comparative examinations highlight the transformative potential of LSTM systems in improving the unwavering quality and proficiency of prescient support in energetic keen framework situations. The study adjusts with current patterns in related writing, emphasizing the developing noticeable quality of profound learning procedures in tending to complex assignments inside the vitality segment. As savvy grids advance, joining progressed data-driven approaches gets to be basic, and this investigation underscores the urgent part of LSTMs in handling the challenges related to prescient maintenance. The discoveries not as it were contribute to the body of information within the field but also offer practical suggestions for the improvement of clever and flexible smart network frameworks. |
| Author | Otero-Potosi, Santiago Rao, A Kakoli Almusawi, Muntather Varshney, Neeraj Sharma, Vishal Goyal, Himanshu Rai |
| Author_xml | – sequence: 1 givenname: Himanshu Rai surname: Goyal fullname: Goyal, Himanshu Rai email: himanshuraigoyal@geu.ac.in organization: Graphic Era Deemed to be University,Department of Computer Science & Engineering,Dehradun – sequence: 2 givenname: Muntather surname: Almusawi fullname: Almusawi, Muntather email: muntatheralmusawi@gmail.com organization: The Islamic University,Department of computers Techniques Engineering,Najaf,Iraq – sequence: 3 givenname: Santiago surname: Otero-Potosi fullname: Otero-Potosi, Santiago email: santiagoandres.otero@liceoaduanero.edu.ec organization: Instituto Superior Tecnológico Liceo Aduanero,Department of Investigation,Ibarra,Ecuador – sequence: 4 givenname: Neeraj surname: Varshney fullname: Varshney, Neeraj email: neeraj.varshney@gla.ac.in organization: GLA University,Department of Computer Engineering and Applications,Mathura – sequence: 5 givenname: Vishal surname: Sharma fullname: Sharma, Vishal email: vishal.3272@gmail.com organization: Lovely Professional University,Phagwara,India – sequence: 6 givenname: A Kakoli surname: Rao fullname: Rao, A Kakoli email: hodcse@liet.in organization: Lloyd Institute of Engineering & Technology,Greater Noida |
| BookMark | eNo1j7tOwzAUQI0EA5T-AYNHGBKuffOwRxSVtlLCQ8leOc4NtaAOciyq_j1IwHS2o3Ou2LmfPDHGBaRCgL7fVtiuCgkgUwkySwXkGjHHM7bUpVaYAxaFyopL9voSaHA2ui_ijXE-kjfeEneetwcTIl8HN8z86OKe15N_4-1-CjHpKBx4Q4cpnPgTxeMU3md-W7ddc3fNLkbzMdPyjwvWPa66apPUz-tt9VAnTouYyLxEneEgBMpRkcqskkClEqbXEq0dirGX2vTKwoiDpVEYBRnSoDT0IAEX7OZX64ho9xncT-1p9z-K33wZTQw |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/IC3SE62002.2024.10593353 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9798350366846 |
| EndPage | 1375 |
| ExternalDocumentID | 10593353 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i91t-2573943d1132f8e84c820e781ab923ccd6fb29ab8c0f3dcef1a8043ed890b0203 |
| IEDL.DBID | RIE |
| IngestDate | Wed Jul 31 06:02:01 EDT 2024 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i91t-2573943d1132f8e84c820e781ab923ccd6fb29ab8c0f3dcef1a8043ed890b0203 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_10593353 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-May-9 |
| PublicationDateYYYYMMDD | 2024-05-09 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-9 day: 09 |
| PublicationDecade | 2020 |
| PublicationTitle | 2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE) |
| PublicationTitleAbbrev | IC3SE |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.8771186 |
| Snippet | This research explores the application of Long Short-Term Memory Systems (LSTMs) and conventional machine learning calculations for prescient support in shrewd... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1370 |
| SubjectTerms | Energy Systems Long short term memory Long Short-Term Memory Networks (LSTMs) Machine Learning Maintenance Nearest neighbor methods Predictive Maintenance Smart grids Support vector machines Transient analysis Writing |
| Title | Predictive Maintenance in Smart Grids with Long Short-Term Memory Networks (LSTM) |
| URI | https://ieeexplore.ieee.org/document/10593353 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxcAEiCLe8sAAg9ukdhx7rlpAaquiZOhWxfYFMpCiNEXi3-NLWxADA5tlWbJ09j3s--4-Qm5DGUuhY2BRLhUTxgRM2Shg3pXZLApNpHPXkE3E06maz_VsW6ze1MIAQAM-gy4Om1y-W9o1fpX1MBbgPOIt0opjuSnW2qFzAt17GvBkKBF14N99fdHdLf9FnNL4jdHhP3c8Ip2fCjw6-_Ytx2QPyhPyPKswrYIGik4ybPSA3TKAFiVN3vwVoA9V4VYUv1bpeFm-0OTVB9cs9caXThBR-0mnG9T3it6Nk3Ry3yHpaJgOHtmWEoEVOqyZ1y-uBXdID58rUMJ6Bw6xCjPjAzVrncxNX2dG2SDnzkIeZioQHJzSgcGc4ylpl8sSzgh1WkjlILShttiT0GRSgPMaakWc-zjknHRQHIv3TdOLxU4SF3_MX5IDFHqDBdRXpF1Xa7gm-_ajLlbVTXNUX4yRlRY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagIMEEiCLeeGCAwW1SO4k9V4VWJFFRMnSr4kcgAylKWyT-PT63BTEwsFmWLEt3vofvvrtD6NYPo5CJyJCgDDlhUnqEq8Aj1pSpIvBlIErthk1EaconEzFeF6u7WhhjjAOfmQ4sXS5fz9QSQmVd8AUoDeg22gkY63mrcq0NPscT3VGfZoMQcAf259djnc2BX6NTnOV4OPjnnYeo_VODh8ff1uUIbZn6GD2PG0isgIrCSQGtHqBfhsFVjbM3-wjwY1PpOYbgKo5n9QvOXq17TXKrfnECmNpPnK5w33N8F2d5ct9G-cMg7w_JeigCqYS_IFbCqGBUw4D4khvOlDXhJuJ-Ia2rppQOS9kTheTKK6lWpvQL7jFqNBeehKzjCWrVs9qcIqwFC7k2vvKFgq6EsgiZ0VZGFYtK64mcoTaQY_q-ansx3VDi_I_9G7Q3zJN4Go_Spwu0DwxwyEBxiVqLZmmu0K76WFTz5tqx7Qt-tphd |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Communication%2C+Computer+Sciences+and+Engineering+%28IC3SE%29&rft.atitle=Predictive+Maintenance+in+Smart+Grids+with+Long+Short-Term+Memory+Networks+%28LSTM%29&rft.au=Goyal%2C+Himanshu+Rai&rft.au=Almusawi%2C+Muntather&rft.au=Otero-Potosi%2C+Santiago&rft.au=Varshney%2C+Neeraj&rft.date=2024-05-09&rft.pub=IEEE&rft.spage=1370&rft.epage=1375&rft_id=info:doi/10.1109%2FIC3SE62002.2024.10593353&rft.externalDocID=10593353 |