A Retail Product Prediction Model Incorporating Machine Learning and Propensity Score Matching Method

Existing machine learning methods for retail product sales forecasting often rely on their own time series data and tend to ignore the correlation between the target retail product and other products. In this paper, we take cigarette product retail sales prediction as an example, and use the neighbo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2024 7th International Conference on Computer Information Science and Application Technology (CISAT) s. 1030 - 1038
Hlavní autori: Chen, Kaidi, Liang, Xuexia, Mo, Yuhua, Li, Yuankun, Xu, Liangben, Kong, Weili
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 12.07.2024
Predmet:
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Existing machine learning methods for retail product sales forecasting often rely on their own time series data and tend to ignore the correlation between the target retail product and other products. In this paper, we take cigarette product retail sales prediction as an example, and use the neighboring related alcohol sales data to predict cigarette product sales through the propensity score matching (PSM) method, KMeans++ clustering algorithm and XGBoost algorithm. Specifically, we use cigarette and alcohol sales data from Guangzhou, China for the years 2021-2022 as the study sample, and the results show 1) Compared with using only tobacco data and machine learning algorithms, the modeling accuracy improves from 82.79% to 91.34% by introducing neighboring alcohol sales data and combining PSM and machine learning XGBoost algorithms. 2) The machine learning XGBoost algorithm identifies successive important features of cigarette sales data: category, specification, price range, and revenue from neighboring alcohol sales (new features generated by the PSM and KMeans++ algorithms). The conclusions show that the PSM algorithm and the machine learning XGBoost algorithm can incorporate other retail products to predict target products and provide an empirical application for predicting retail sales based on associations with neighboring related products
AbstractList Existing machine learning methods for retail product sales forecasting often rely on their own time series data and tend to ignore the correlation between the target retail product and other products. In this paper, we take cigarette product retail sales prediction as an example, and use the neighboring related alcohol sales data to predict cigarette product sales through the propensity score matching (PSM) method, KMeans++ clustering algorithm and XGBoost algorithm. Specifically, we use cigarette and alcohol sales data from Guangzhou, China for the years 2021-2022 as the study sample, and the results show 1) Compared with using only tobacco data and machine learning algorithms, the modeling accuracy improves from 82.79% to 91.34% by introducing neighboring alcohol sales data and combining PSM and machine learning XGBoost algorithms. 2) The machine learning XGBoost algorithm identifies successive important features of cigarette sales data: category, specification, price range, and revenue from neighboring alcohol sales (new features generated by the PSM and KMeans++ algorithms). The conclusions show that the PSM algorithm and the machine learning XGBoost algorithm can incorporate other retail products to predict target products and provide an empirical application for predicting retail sales based on associations with neighboring related products
Author Mo, Yuhua
Xu, Liangben
Kong, Weili
Li, Yuankun
Chen, Kaidi
Liang, Xuexia
Author_xml – sequence: 1
  givenname: Kaidi
  surname: Chen
  fullname: Chen, Kaidi
  email: prettyckd@qq.com
  organization: Internet Research Center,China Tobacco Guangxi Industrial Co.,LTD,Nanning,China
– sequence: 2
  givenname: Xuexia
  surname: Liang
  fullname: Liang, Xuexia
  email: 1172619310@qq.com
  organization: Internet Research Center,China Tobacco Guangxi Industrial Co.,LTD,Nanning,China
– sequence: 3
  givenname: Yuhua
  surname: Mo
  fullname: Mo, Yuhua
  email: moyuhua95@gmail.com
  organization: Internet Research Center,China Tobacco Guangxi Industrial Co.,LTD,Nanning,China
– sequence: 4
  givenname: Yuankun
  surname: Li
  fullname: Li, Yuankun
  email: liyk@pbcsf.tsinghua.edu.cn
  organization: Tsinghua University,PBC School of Finance,Beijing,China
– sequence: 5
  givenname: Liangben
  surname: Xu
  fullname: Xu, Liangben
  email: 1253695578@qq.com
  organization: Internet Research Center,China Tobacco Guangxi Industrial Co.,LTD,Nanning,China
– sequence: 6
  givenname: Weili
  surname: Kong
  fullname: Kong, Weili
  email: kongweili1108@qq.com
  organization: Internet Research Center,China Tobacco Guangxi Industrial Co.,LTD,Nanning,China
BookMark eNo1j8tKxDAYhSPoQsd5Axd5gdbc0yxL8TLQQXG6H9LkrxOoSenExby9Lerqg8N3Dpw7dB1TBIQwJSWlxDw2u0PdKcYrVjLCREmJMlJwdoW2RpuKS8K1pETfIqjxB2QbRvw-J__t8kLwweWQIt4nDyPeRZfmKc02h_iJ99adQgTcgp3jGtjo1-4E8RzyBR8WGRYrr9qiQz4lf49uBjueYfvHDeqen7rmtWjfXnZN3RbB0FxQKyvLjBcDs1JJz5ijPSFCMu2ld4pUgilhhl5Xph-MMRq4Nkqz3uleiZ5v0MPvbACA4zSHLztfjv_n-Q9e_VTV
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CISAT62382.2024.10695432
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350375107
EndPage 1038
ExternalDocumentID 10695432
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-1a58a29d4f2a565d22c1b004527d5dc60842649fb789bf9997e379672bc7b64b3
IEDL.DBID RIE
IngestDate Wed Oct 09 06:12:49 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-1a58a29d4f2a565d22c1b004527d5dc60842649fb789bf9997e379672bc7b64b3
PageCount 9
ParticipantIDs ieee_primary_10695432
PublicationCentury 2000
PublicationDate 2024-July-12
PublicationDateYYYYMMDD 2024-07-12
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-12
  day: 12
PublicationDecade 2020
PublicationTitle 2024 7th International Conference on Computer Information Science and Application Technology (CISAT)
PublicationTitleAbbrev CISAT
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8759408
Snippet Existing machine learning methods for retail product sales forecasting often rely on their own time series data and tend to ignore the correlation between the...
SourceID ieee
SourceType Publisher
StartPage 1030
SubjectTerms Alcoholic beverages
Analytical models
Cigarette Release Strategy
Clustering algorithms
component
Data models
Decision making
Decision-making Quality
Heuristic algorithms
KMeans++ Clustering Algorithm
Machine learning
Machine learning algorithms
Machine Learning XGBoost Algorithm
Prediction algorithms
Predictive models
Propensity Score Matching
Title A Retail Product Prediction Model Incorporating Machine Learning and Propensity Score Matching Method
URI https://ieeexplore.ieee.org/document/10695432
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA46PHhSceJvcvDa2fxokxzHcDhwY7ghu40meZWBdGN2gv-9eemmePDgqaFNWnghea953_c9Qu58ZoWXwibCgE6ky8qwD-aImSq0ZaBMw-N-eVKjkZ7NzHhLVo9cGACI4DPoYDPm8v3SbfCoLKzw3GRShB13XynVkLV26JzU3PcGk-40uHONBCsuO7vuvwqnRL_RP_rnF49J-4eBR8ffvuWE7EF1SqBLnyPiEx-hTmu4Yp4FbUuxqNkbHaAsZZQmDsPoMCIlgW5FVF9pUXkcu0LUev1JJ6hhGXrVEVBJh7GadJtM-w_T3mOyLZOQLAyrE1ZkuuDGy5IXITrznDtmo1K68pl3eaox6DGlVdrYMsSDCoQyueLWKZtLK85Iq1pWcE5oiGVSIUTqLTOYTwtvls6HXyimDeMFXJA2mmi-aoQw5jvrXP5x_4oc4kTgUSjj16RVrzdwQw7cR714X9_G6fsCs0icHg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kCnpSseLbPXhNzT6S3T2WYmmwLcUG6a1kH5GCpKVNBf-9O9tW8eDBU0KSycIs2ZnsfN83CD3YRDPLmY6YcjLiJin9OpgCZqqQmjihNjzu174YDuVkokZbsnrgwjjnAvjMteA01PLt3Kxhq8x_4alKOPMr7n7COSUbutYOnxOrx042buc-oEugWFHe2hn8ap0SIkf3-J9jnqDmDwcPj76jyynac9UZcm38EjCfcAuUWv0RKi3gXQxtzd5xBsKUQZzYm-FBwEo6vJVRfcNFZcF2Abj1-hOPQcXSP1UHSCUehH7STZR3n_JOL9o2SohmitQRKRJZUGV5SQufn1lKDdFBK13YxJo0lpD2qFILqXTpM0LhmFCpoNoInXLNzlGjmlfuAmGfzcSMsdhqoqCi5t_MjfU_UUQqQgt3iZrgouliI4Ux3Xnn6o_r9-iwlw_60342fL5GRzApsDFK6A1q1Mu1u0UH5qOerZZ3YSq_AAFQn2U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+7th+International+Conference+on+Computer+Information+Science+and+Application+Technology+%28CISAT%29&rft.atitle=A+Retail+Product+Prediction+Model+Incorporating+Machine+Learning+and+Propensity+Score+Matching+Method&rft.au=Chen%2C+Kaidi&rft.au=Liang%2C+Xuexia&rft.au=Mo%2C+Yuhua&rft.au=Li%2C+Yuankun&rft.date=2024-07-12&rft.pub=IEEE&rft.spage=1030&rft.epage=1038&rft_id=info:doi/10.1109%2FCISAT62382.2024.10695432&rft.externalDocID=10695432