Crop Classification on Hyperspectral Images Using Residual Network and Multi-Head Self-Attention Feature Extraction

Nowadays, hyperspectral imaging has empowered classification and prediction in many fields such as agriculture, land usage, tourism, etc. due to advancements in deep learning. This research focuses on obtaining efficient crop classification using Residual Network, Multi-Head Self- Attention, Convolu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2024 International Conference on Data Science and Network Security (ICDSNS) S. 01 - 04
Hauptverfasser: Naga Saranya, N., Vivekanandhan, V., Al-Farouni, Mohammed, Shreyas, A V, Ranjith kumar, Gotte
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 26.07.2024
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Nowadays, hyperspectral imaging has empowered classification and prediction in many fields such as agriculture, land usage, tourism, etc. due to advancements in deep learning. This research focuses on obtaining efficient crop classification using Residual Network, Multi-Head Self- Attention, Convolutional Neural Network (ResNet-MHSA- CNN) approach. The Adaptive Wiener Filtering (AWF) is applied in preprocessing to eliminate noise, handles blurred parts of images effectively and decreases error rate in inverse filtering. The Residual Network (ResNet) method is employed by implement residual learning to eliminate degradation issues of deep neural networks. The high-resolution depth features of hyperspectral images are extracted by residual learning ResNet network. The Multi-Head Self-Attention (MHSA) utilized to capture long-range dependencies and global context information and helps the model in learning diverse patterns. Finally, the extracted features are given to Convolutional Neural Network (CNN) with complex pattern learning ability that excels in image classification with multiple layers of filters. The proposed ResNet-MHSA-CNN approach is evaluated with Indian Pines dataset and achieved 99.74%, 99% accuracy and kappa value respectively. The proposed method outperformed state-of-art methods such as Cross-Mixing Residual Network of Convolutional Neural Network (CMR-CNN), Deep Stacked Denoising Autoencoder (DSDA).
AbstractList Nowadays, hyperspectral imaging has empowered classification and prediction in many fields such as agriculture, land usage, tourism, etc. due to advancements in deep learning. This research focuses on obtaining efficient crop classification using Residual Network, Multi-Head Self- Attention, Convolutional Neural Network (ResNet-MHSA- CNN) approach. The Adaptive Wiener Filtering (AWF) is applied in preprocessing to eliminate noise, handles blurred parts of images effectively and decreases error rate in inverse filtering. The Residual Network (ResNet) method is employed by implement residual learning to eliminate degradation issues of deep neural networks. The high-resolution depth features of hyperspectral images are extracted by residual learning ResNet network. The Multi-Head Self-Attention (MHSA) utilized to capture long-range dependencies and global context information and helps the model in learning diverse patterns. Finally, the extracted features are given to Convolutional Neural Network (CNN) with complex pattern learning ability that excels in image classification with multiple layers of filters. The proposed ResNet-MHSA-CNN approach is evaluated with Indian Pines dataset and achieved 99.74%, 99% accuracy and kappa value respectively. The proposed method outperformed state-of-art methods such as Cross-Mixing Residual Network of Convolutional Neural Network (CMR-CNN), Deep Stacked Denoising Autoencoder (DSDA).
Author Shreyas, A V
Naga Saranya, N.
Vivekanandhan, V.
Al-Farouni, Mohammed
Ranjith kumar, Gotte
Author_xml – sequence: 1
  givenname: N.
  surname: Naga Saranya
  fullname: Naga Saranya, N.
  email: drnagasaranya@gmail.com
  organization: Saveetha College of Liberal Arts & Science, SIMATS,Department of Computer Applications,Chennai,India
– sequence: 2
  givenname: V.
  surname: Vivekanandhan
  fullname: Vivekanandhan, V.
  email: acevivek7677@gmail.com
  organization: Malla Reddy College of Engineering, Secunderabad,Department of Computer Science and Engineering,Hyderabad,India
– sequence: 3
  givenname: Mohammed
  surname: Al-Farouni
  fullname: Al-Farouni, Mohammed
  email: mhussien074@gmail.com
  organization: College of technical engineering, The Islamic university,Department of computers Techniques engineering,Najaf,Iraq
– sequence: 4
  givenname: A V
  surname: Shreyas
  fullname: Shreyas, A V
  email: er.shreyas@hotmail.com
  organization: Nitte Meenakshi Institute of Technology,Department of Civil Engineering,Bengaluru,India
– sequence: 5
  givenname: Gotte
  surname: Ranjith kumar
  fullname: Ranjith kumar, Gotte
  email: ranjeet.kits@gmail.com
  organization: School of Computer Science & Artificial Intelligence, SR University,Warangal,India
BookMark eNo1kNtKAzEURSPog9b-gQ_xA6bmMpeexzK2tlAr2PpcjslJCU5nhiRF_XvHG2zYsNish33FztuuJcZupZhIKeBuVd9vN9tSSakmSqh8IkUJUhT5GRtDBVNdCF3pYXrJYh26ntcNxuidN5h81_Ihy8-eQuzJpIANXx3xQJG_RN8e-DNFb08D3VB678Ibx9byx1OTfLYktHxLjctmKVH7I1sQplMgPv8YVOYbXbMLh02k8V-P2G4x39XLbP30sKpn68yDTJmsVIESCm1Bg9FVLvLKkLYqh1xqNFNlquKVBEIJ2hpjSweAUwQnwDmp9Ijd_Go9Ee374I8YPvf_V-gvidZa7w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICDSNS62112.2024.10691054
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350373110
EndPage 04
ExternalDocumentID 10691054
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i91t-1725a1953d939c374047ce3d249413ac82c75be0a9693dccd6f99a8a9f09ff123
IEDL.DBID RIE
IngestDate Wed Oct 09 06:12:58 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i91t-1725a1953d939c374047ce3d249413ac82c75be0a9693dccd6f99a8a9f09ff123
PageCount 4
ParticipantIDs ieee_primary_10691054
PublicationCentury 2000
PublicationDate 2024-July-26
PublicationDateYYYYMMDD 2024-07-26
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-July-26
  day: 26
PublicationDecade 2020
PublicationTitle 2024 International Conference on Data Science and Network Security (ICDSNS)
PublicationTitleAbbrev ICDSNS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8774937
Snippet Nowadays, hyperspectral imaging has empowered classification and prediction in many fields such as agriculture, land usage, tourism, etc. due to advancements...
SourceID ieee
SourceType Publisher
StartPage 01
SubjectTerms Accuracy
Convolutional neural networks
Crops
Degradation
Error analysis
Feature extraction
Filters
high-resolution
hyperspectral images
Hyperspectral imaging
multi-head self-attention
Noise
residual learning
residual network
Residual neural networks
Title Crop Classification on Hyperspectral Images Using Residual Network and Multi-Head Self-Attention Feature Extraction
URI https://ieeexplore.ieee.org/document/10691054
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20iHhSseI3EbymdrvZjxyltrSXpdgeeivZZAKFui27W_HnO8m2igcPwh7CsmxghuTNJO_NADwFVhgZpYbb0Fgu0HR5TqjJFYGTlbnXMvpmE0mWpfO5nOzE6l4Lg4iefIYdN_R3-Watt-6ojFZ4TOgWiUM4TJK4EWsdw-OububzuP86zaYxpTROYdUTnf33vzqneOAYnv5zyjNo_0jw2OQbXM7hAIsLqPrlesN8H0vH8PFGZfSMKJlsNJOlWrHxO-0RFfNkAPaGlZdbsazhezNVGOZVt3xE7mVTXFn-UtcN65G5iHBbIht81mUjeWjDbDiY9Ud81zWBL2VQcwpIIuXuxowMpQ4T0RWJxtBQmkV4pXTa00mUY1fJWIZGaxNbKVWqpCXnWMKxS2gV6wKvgKkkzCNNIZWStJ_ST4XMXYUskRsdKAyuoe0Mttg0dTEWe1vd_PH-Fk6cW9zJaC--g1ZdbvEejvRHvazKB-_NL-P5o00
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60inpSseLbCF5T95F95Ci1ZYt1KbaH3ko2yYJQt2V3K_58J9lW8eBB2ENY2A3MkHwzyffNANy7OVM8iBXNfZVTppVDM0RNKhCccp5ZLaNtNhGlaTyd8tFarG61MFprSz7THTO0d_lqIVfmqAxXeIjoFrBt2AkY85xGrrUHd-vKmQ-D7tM4HYeY1BiNlcc6my9-9U6x0NE__OekR9D-EeGR0Te8HMOWLk6g6paLJbGdLA3Hx5qV4JNgOtmoJksxJ4N33CUqYukA5FVXVnBF0obxTUShiNXd0gQdTMZ6ntPHum54j8TEhKtSk95nXTaihzZM-r1JN6Hrvgn0jbs1xZAkEOZ2THGfSz9iDouk9hUmWohYQsaejIJMO4KH3FdSqjDnXMSC5-ieHJHsFFrFotBnQETkZ4HEoEpw3FHxp4xnpkYWy5R0hXbPoW0MNls2lTFmG1td_PH-FvaTyctwNhykz5dwYFxkzkm98ApadbnS17ArP-q3qryxnv0CjiKmlA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Data+Science+and+Network+Security+%28ICDSNS%29&rft.atitle=Crop+Classification+on+Hyperspectral+Images+Using+Residual+Network+and+Multi-Head+Self-Attention+Feature+Extraction&rft.au=Naga+Saranya%2C+N.&rft.au=Vivekanandhan%2C+V.&rft.au=Al-Farouni%2C+Mohammed&rft.au=Shreyas%2C+A+V&rft.date=2024-07-26&rft.pub=IEEE&rft.spage=01&rft.epage=04&rft_id=info:doi/10.1109%2FICDSNS62112.2024.10691054&rft.externalDocID=10691054