Modular dynamic deep denoising autoencoder for speech enhancement
Deep Denoising Autoencoder (DDAE) is an effective method for noise reduction and speech enhancement. However, a single DDAE with a fixed number of frames for neural network input cannot extract contextual information sufficiently. It has also less generalization in unknown SNRs (signal-to-noise-rati...
Uložené v:
| Vydané v: | 2017 7th International Conference on Computer and Knowledge Engineering (ICCKE) s. 254 - 259 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
IEEE
01.10.2017
|
| Predmet: | |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Deep Denoising Autoencoder (DDAE) is an effective method for noise reduction and speech enhancement. However, a single DDAE with a fixed number of frames for neural network input cannot extract contextual information sufficiently. It has also less generalization in unknown SNRs (signal-to-noise-ratio) and the enhanced output has some residual noise. In this paper, we use a modular model in which three DDAEs with different window lengths are stacked. Experimental results showes that our proposed architecture, namely modular dynamic deep denoising autoencoder (MD-DDAE) provides superior performance in comparison with the traditional DDAE models in different noisy conditions. |
|---|---|
| AbstractList | Deep Denoising Autoencoder (DDAE) is an effective method for noise reduction and speech enhancement. However, a single DDAE with a fixed number of frames for neural network input cannot extract contextual information sufficiently. It has also less generalization in unknown SNRs (signal-to-noise-ratio) and the enhanced output has some residual noise. In this paper, we use a modular model in which three DDAEs with different window lengths are stacked. Experimental results showes that our proposed architecture, namely modular dynamic deep denoising autoencoder (MD-DDAE) provides superior performance in comparison with the traditional DDAE models in different noisy conditions. |
| Author | Seyedin, Sanaz Ahadi, Seyed Mohammad Safari, Razieh |
| Author_xml | – sequence: 1 givenname: Razieh surname: Safari fullname: Safari, Razieh email: r.safari@aut.ac.ir organization: Electr. Eng. Dept., Amirkabir Univ. of Technol., Tehran, Iran – sequence: 2 givenname: Seyed Mohammad surname: Ahadi fullname: Ahadi, Seyed Mohammad email: sma@aut.ac.ir organization: Electr. Eng. Dept., Amirkabir Univ. of Technol., Tehran, Iran – sequence: 3 givenname: Sanaz surname: Seyedin fullname: Seyedin, Sanaz email: sseyedin@aut.ac.ir organization: Electr. Eng. Dept., Amirkabir Univ. of Technol., Tehran, Iran |
| BookMark | eNotj7tuwjAUQF2pHVrKD9DFP5DUr_gxooi2CKou7MiPa7BE7MgJA3_fSmU5ZzvSeUGPuWRAaEVJSykx79u-321aRqhqNZVKa_mAlkZp2nEtiSaCP6P1dwnXi6043LIdkscBYPxDLmlK-YTtdS6QfQlQcSwVTyOAP2PIZ5s9DJDnV_QU7WWC5d0LdPjYHPqvZv_zue3X-yYZMjdRa9Mx7gXjUTDtOicENYpJoM4xahkE7V2I0UspnOVOOhNY8D4AZ7JTfIHe_rMJAI5jTYOtt-P9i_8ClzpIFg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICCKE.2017.8167886 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9781538608043 1538608049 |
| EndPage | 259 |
| ExternalDocumentID | 8167886 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i90t-f889523c423f428b5b4419726e1bb21a2ed8cbdffc664ba3b6b9d2dccde326573 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:37:36 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-f889523c423f428b5b4419726e1bb21a2ed8cbdffc664ba3b6b9d2dccde326573 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_8167886 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Oct. |
| PublicationDateYYYYMMDD | 2017-10-01 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-Oct. |
| PublicationDecade | 2010 |
| PublicationTitle | 2017 7th International Conference on Computer and Knowledge Engineering (ICCKE) |
| PublicationTitleAbbrev | ICCKE |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.6407111 |
| Snippet | Deep Denoising Autoencoder (DDAE) is an effective method for noise reduction and speech enhancement. However, a single DDAE with a fixed number of frames for... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 254 |
| SubjectTerms | Deep Denoising Autoencoder (DDAE) Improved Context Pattern Modular Dynamic Deep Denoising Autoencoder (MD-DDAE) Neural networks Noise measurement Noise reduction Signal to noise ratio Speech Speech enhancement Training Unseen Signal to Noise Ratio |
| Title | Modular dynamic deep denoising autoencoder for speech enhancement |
| URI | https://ieeexplore.ieee.org/document/8167886 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwED6S0KFTW5LSNxo61nnIth5jCQktbUOGDNmCpTuRLHZI7P7-SnaaUujSRQghOKRDuu-k7-4AHpE7yyUmkfZ4NQolrvyRcsMIUyFdwBgZ1tn13-VsppZLPW_B0zEWhohq8hn1Q7f-y8fCVuGpbKBG_mpVog1tKUUTq_UdBzPUg9fx-G0SyFqyf5j4q2JKbTCmZ_8TdQ69n8g7Nj_alAtoUd6F548CA1uUYVM-niHR1jd5sQmePsuqsgj5KJF2zGNQtt8S2TWjfB1UGgT1YDGdLMYv0aH0QbTRwzJySmnvIVqPdZz3D0xqPGrRkgsaGcNHGSdU1qBzVojEZLERRiNHa5E8HEtlfAmdvMjpChg3IqHUW2VlvTOQBkBkBCZWxCJOZILX0A2rX22b5Barw8Jv_h6-hdOwwQ2b7Q465a6iezixn-Vmv3uoNfIF396Ozw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB6sLbSntmjpuzn02PWR3U2yxyKK4gMPHrzJJjOhXnZF1_7-JuvWUuillxBCIEyGZL5JZuYDeEVuDZcYBYnDq4GnuHJHynYCjIW0HmOkWFbXn8jZTC2XybwGb8dcGCIqg8-o5bvlXz7mZu-fytqq665WJU7g1DNnVdla35kwnaQ96vXGfR-uJVvV1F-cKaXJGFz-b7EraP7k3rH50apcQ42yBrxPc_TxogwPBPIMiTauyfK19_VZui9yX5ESacscCmW7DZH5YJR9eKX6hZqwGPQXvWFQkR8E66RTBFapxPmIxqEd6zwEHWsncSK5oK7WvJtyQmU0WmuEiHQaaqET5GgMkgNksQxvoJ7lGd0C41pEFDu7rIxzB2IPibTAyIhQhJGM8A4aXvrV5lDeYlUJfv_38AucDxfTyWoymo0f4MJv9iG27RHqxXZPT3BmPov1bvtcaucLgLWSGA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+7th+International+Conference+on+Computer+and+Knowledge+Engineering+%28ICCKE%29&rft.atitle=Modular+dynamic+deep+denoising+autoencoder+for+speech+enhancement&rft.au=Safari%2C+Razieh&rft.au=Ahadi%2C+Seyed+Mohammad&rft.au=Seyedin%2C+Sanaz&rft.date=2017-10-01&rft.pub=IEEE&rft.spage=254&rft.epage=259&rft_id=info:doi/10.1109%2FICCKE.2017.8167886&rft.externalDocID=8167886 |