Automatic Test Data Generation Based on SAMPSO Algorithm
This paper proposes an automatic test data generation method based on Simple and Adaptive Mutation Particle Swarm Optimization algorithm. According to the particle velocity independency in the evolution, this algorithm removes particle velocity , only the position of particle control the process of...
Uloženo v:
| Vydáno v: | 2009 International Conference on Computational Intelligence and Software Engineering s. 1 - 4 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.12.2009
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper proposes an automatic test data generation method based on Simple and Adaptive Mutation Particle Swarm Optimization algorithm. According to the particle velocity independency in the evolution, this algorithm removes particle velocity , only the position of particle control the process of evolution, avoiding problems such as slow of convergence in the late evolutionary and low-precision radiation of particle that particle velocity brings about; according to fit variance and current optimum solution, we find the current mutation rate of best particle, the operation of mutation can improve ability of global searching in the earlier evolutionary. Test examples show that it is better than basic particle swarm optimization algorithm and can improve the efficiency of automated test data generation. |
|---|---|
| AbstractList | This paper proposes an automatic test data generation method based on Simple and Adaptive Mutation Particle Swarm Optimization algorithm. According to the particle velocity independency in the evolution, this algorithm removes particle velocity , only the position of particle control the process of evolution, avoiding problems such as slow of convergence in the late evolutionary and low-precision radiation of particle that particle velocity brings about; according to fit variance and current optimum solution, we find the current mutation rate of best particle, the operation of mutation can improve ability of global searching in the earlier evolutionary. Test examples show that it is better than basic particle swarm optimization algorithm and can improve the efficiency of automated test data generation. |
| Author | Wei, Fu-qiang Jiang, Shu-juan |
| Author_xml | – sequence: 1 givenname: Fu-qiang surname: Wei fullname: Wei, Fu-qiang email: wwwnwfq@163.com organization: Sch. of Comput. Sci. & Technol., China Univ. of Min. & Technol., Xuzhou, China – sequence: 2 givenname: Shu-juan surname: Jiang fullname: Jiang, Shu-juan email: shjjiang@cumt.edu.cn organization: Sch. of Comput. Sci. & Technol., China Univ. of Min. & Technol., Xuzhou, China |
| BookMark | eNotj81Kw0AUhUewC1N9AHEzL5A4_8ksY6y1UKmQ7MudyR0daBJJxoVvb8WuzuE78MHJyPU4jUjIPWcF58w-Nrt2UwjGbKGlMVKJK5JxJZRSmpXVimR_m2VS2_KGVPV3mgZI0dMOl0SfIQHd4ojzmU0jfYIFe3oubf323h5offqY5pg-h1uyCnBa8O6Sa9K9bLrmNd8ftrum3ufRspQHZQSAcSDRBi97blzJeI_A0Xnkqlda9QaCkEEgGllqxz0aFyrPGQgt1-ThXxsR8fg1xwHmn-PlmPwFLYJE1w |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/CISE.2009.5366342 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 1424445078 9781424445073 |
| EndPage | 4 |
| ExternalDocumentID | 5366342 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i90t-f462aa6ba3e9fc3d16b701dea1ebce14d454d6af23f2ee6375b1ce6bf8c10a253 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:38:51 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| LCCN | 2009903597 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-f462aa6ba3e9fc3d16b701dea1ebce14d454d6af23f2ee6375b1ce6bf8c10a253 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_5366342 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-Dec. |
| PublicationDateYYYYMMDD | 2009-12-01 |
| PublicationDate_xml | – month: 12 year: 2009 text: 2009-Dec. |
| PublicationDecade | 2000 |
| PublicationTitle | 2009 International Conference on Computational Intelligence and Software Engineering |
| PublicationTitleAbbrev | CISE |
| PublicationYear | 2009 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.4284656 |
| Snippet | This paper proposes an automatic test data generation method based on Simple and Adaptive Mutation Particle Swarm Optimization algorithm. According to the... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Automatic control Automatic testing Computer science Electronic mail Genetic mutations Iterative algorithms Logic testing Paper technology Particle swarm optimization Software testing |
| Title | Automatic Test Data Generation Based on SAMPSO Algorithm |
| URI | https://ieeexplore.ieee.org/document/5366342 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8eCpaiu-ycGjazePzWaPtbbowVpoD72VbDLRgu5K3fr7zT6sCF68hRAIfMPMl2Qy8wFcCW45Rk4G3r42EDIU3ue4DKgzNE24Uih0JTYRTyZqsUimLbje1sIgYvX5DG_KYZXLt7nZlE9l_Yh7fhQ-4O7EsaxrtZpEJQ2T_vBhNqobUDbrfgmmVHwx7vxvp33o_RTekemWUg6ghdkhdL6VF0jjiF1Qg02RV81WydyHdXKnC03qDtIl0OTWc5MlfjAbPE5nT2Tw-pyvV8XLWw_m49F8eB80GgjBKgmLwAnJtJap5pg4wy2VaRxSi5piapAKKyJhpXaMO4YoeRyl1KBMnTI01CziR9DO8gyPgRiFTjEjpFXan8KENkLE_noUKa2Zh-0EuiUOy_e6y8WygeD07-kz2GONkkJIz6FdrDd4Abvms1h9rC8r03wBCl-QwQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4ImugJFYxve_Doynb72O4REQIRkIQ9cCPddqokyhpc_P12H2JMvHhrmiZNvsnM13Y68yF0w6ihwK3wnH2Nx4TPnM9R4RGrSRJRKYGpQmwinEzkfB5Na-h2WwsDAMXnM7jLh0Uu36R6kz-VtTl1_MhcwN3hjkf9slqrSlUSP2p3h7Ne2YKyWvlLMqVgjH7jf3sdoNZP6R2ebknlENVgdYQa39oLuHLFJpKdTZYW7VZx7AI7flCZwmUP6RxqfO_YyWA3mHXG09kT7rw-p-tl9vLWQnG_F3cHXqWC4C0jP_MsE4FSIlEUIqupISIJfWJAEUg0EGYYZ0YoG1AbAAga8oRoEImVmvgq4PQY1VfpCk4Q1hKsDDQTRip3DmNKMxa6CxKXSgUOtlPUzHFYvJd9LhYVBGd_T1-jvUE8Hi1Gw8njOdoPKl0Fn1ygerbewCXa1Z_Z8mN9VZjpC8xQlA4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Computational+Intelligence+and+Software+Engineering&rft.atitle=Automatic+Test+Data+Generation+Based+on+SAMPSO+Algorithm&rft.au=Wei%2C+Fu-qiang&rft.au=Jiang%2C+Shu-juan&rft.date=2009-12-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FCISE.2009.5366342&rft.externalDocID=5366342 |