Automatic Test Data Generation Based on SAMPSO Algorithm

This paper proposes an automatic test data generation method based on Simple and Adaptive Mutation Particle Swarm Optimization algorithm. According to the particle velocity independency in the evolution, this algorithm removes particle velocity , only the position of particle control the process of...

Full description

Saved in:
Bibliographic Details
Published in:2009 International Conference on Computational Intelligence and Software Engineering pp. 1 - 4
Main Authors: Wei, Fu-qiang, Jiang, Shu-juan
Format: Conference Proceeding
Language:English
Published: IEEE 01.12.2009
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper proposes an automatic test data generation method based on Simple and Adaptive Mutation Particle Swarm Optimization algorithm. According to the particle velocity independency in the evolution, this algorithm removes particle velocity , only the position of particle control the process of evolution, avoiding problems such as slow of convergence in the late evolutionary and low-precision radiation of particle that particle velocity brings about; according to fit variance and current optimum solution, we find the current mutation rate of best particle, the operation of mutation can improve ability of global searching in the earlier evolutionary. Test examples show that it is better than basic particle swarm optimization algorithm and can improve the efficiency of automated test data generation.
AbstractList This paper proposes an automatic test data generation method based on Simple and Adaptive Mutation Particle Swarm Optimization algorithm. According to the particle velocity independency in the evolution, this algorithm removes particle velocity , only the position of particle control the process of evolution, avoiding problems such as slow of convergence in the late evolutionary and low-precision radiation of particle that particle velocity brings about; according to fit variance and current optimum solution, we find the current mutation rate of best particle, the operation of mutation can improve ability of global searching in the earlier evolutionary. Test examples show that it is better than basic particle swarm optimization algorithm and can improve the efficiency of automated test data generation.
Author Wei, Fu-qiang
Jiang, Shu-juan
Author_xml – sequence: 1
  givenname: Fu-qiang
  surname: Wei
  fullname: Wei, Fu-qiang
  email: wwwnwfq@163.com
  organization: Sch. of Comput. Sci. & Technol., China Univ. of Min. & Technol., Xuzhou, China
– sequence: 2
  givenname: Shu-juan
  surname: Jiang
  fullname: Jiang, Shu-juan
  email: shjjiang@cumt.edu.cn
  organization: Sch. of Comput. Sci. & Technol., China Univ. of Min. & Technol., Xuzhou, China
BookMark eNotj81Kw0AUhUewC1N9AHEzL5A4_8ksY6y1UKmQ7MudyR0daBJJxoVvb8WuzuE78MHJyPU4jUjIPWcF58w-Nrt2UwjGbKGlMVKJK5JxJZRSmpXVimR_m2VS2_KGVPV3mgZI0dMOl0SfIQHd4ojzmU0jfYIFe3oubf323h5offqY5pg-h1uyCnBa8O6Sa9K9bLrmNd8ftrum3ufRspQHZQSAcSDRBi97blzJeI_A0Xnkqlda9QaCkEEgGllqxz0aFyrPGQgt1-ThXxsR8fg1xwHmn-PlmPwFLYJE1w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CISE.2009.5366342
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1424445078
9781424445073
EndPage 4
ExternalDocumentID 5366342
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-f462aa6ba3e9fc3d16b701dea1ebce14d454d6af23f2ee6375b1ce6bf8c10a253
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:51 EDT 2023
IsPeerReviewed false
IsScholarly false
LCCN 2009903597
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-f462aa6ba3e9fc3d16b701dea1ebce14d454d6af23f2ee6375b1ce6bf8c10a253
PageCount 4
ParticipantIDs ieee_primary_5366342
PublicationCentury 2000
PublicationDate 2009-Dec.
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-Dec.
PublicationDecade 2000
PublicationTitle 2009 International Conference on Computational Intelligence and Software Engineering
PublicationTitleAbbrev CISE
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.4284656
Snippet This paper proposes an automatic test data generation method based on Simple and Adaptive Mutation Particle Swarm Optimization algorithm. According to the...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Automatic control
Automatic testing
Computer science
Electronic mail
Genetic mutations
Iterative algorithms
Logic testing
Paper technology
Particle swarm optimization
Software testing
Title Automatic Test Data Generation Based on SAMPSO Algorithm
URI https://ieeexplore.ieee.org/document/5366342
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePBUtRXf5ODRtZvNc4-1tihoLbSH3koeEy3YrtStv9_sw4rgxdsQAgMTMh-TyXwfQldSK-848FCbWBoxL1SkQxURMRBepFx540sS10c5GqnZLB030PV2FgYAys9ncFOYZS_fZXZTPJV1OQ34yELC3ZFSVLNadaOSxGm3_zAZVASU9b5fgiklXgxb__O0jzo_g3d4vIWUA9SA1SFqfSsv4PoitpHqbfKsJFvF05DW8Z3ONa4YpItA49uATQ4HY9J7Gk-ece_tJVsv8tdlB02Hg2n_Pqo1EKJFGueRZyLRWhhNIfWWOiKMjIkDTcBYIMwxzpzQPqE-ARBUckMsCOOVJbFOOD1CzVW2gmOEfWLj1FMZc6MYaG6olNwX7C3aSU3dCWoXcZi_VywX8zoEp38vn6G9pFZSiMk5aubrDVygXfuZLz7Wl-XRfAFigpHE
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6lCnqq2opvc_Do2t3Na_dYa0uLbS10D72VPCZa0K7Urb_f7MOK4MXbEAIDEzIfk8l8H0I3QkbWMGCuNtHEo5ZHnnRVhEeBWx6zyCpbkLiOxGQSzefxtIZut7MwAFB8PoO73Cx6-SbVm_yprM2Iw0fqEu4OczjKy2mtqlUZ-HG7O5z1SgrKaucvyZQCMfqN__k6QK2f0Ts83YLKIarB6gg1vrUXcHUVmyjqbLK0oFvFiUvs-EFmEpcc0nmo8b1DJ4OdMeuMp7Mn3Hl9TtfL7OWthZJ-L-kOvEoFwVvGfuZZykMpuZIEYquJCbgSfmBABqA0BNRQRg2XNiQ2BOBEMBVo4MpGOvBlyMgxqq_SFZwgbEPtx5YIn6mIgmSKCMFszt8ijZDEnKJmHofFe8lzsahCcPb38jXaGyTj0WI0nDyeo_2w0lXwgwtUz9YbuES7-jNbfqyvimP6Ajv6lRc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Conference+on+Computational+Intelligence+and+Software+Engineering&rft.atitle=Automatic+Test+Data+Generation+Based+on+SAMPSO+Algorithm&rft.au=Wei%2C+Fu-qiang&rft.au=Jiang%2C+Shu-juan&rft.date=2009-12-01&rft.pub=IEEE&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FCISE.2009.5366342&rft.externalDocID=5366342