Automated, Parallel Optimization of Stochastic Functions Using a Modified Simplex Algorithm
This paper proposes a framework and new parallel algorithm for optimization of stochastic functions based on a downhill simplex algorithm. The function to be optimized is assumed to be subject to random noise, the variance of which decreases with sampling time, this is the situation expected for man...
Saved in:
| Published in: | 2010 Sixth IEEE International Conference on E-Science Workshops pp. 98 - 103 |
|---|---|
| Main Authors: | , , , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.12.2010
|
| Subjects: | |
| ISBN: | 9781424489886, 1424489881 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper proposes a framework and new parallel algorithm for optimization of stochastic functions based on a downhill simplex algorithm. The function to be optimized is assumed to be subject to random noise, the variance of which decreases with sampling time, this is the situation expected for many real-world and simulation applications where results are obtained from sampling, and contain experimental error or random noise. The proposed optimization method is found to be comparable to previous stochastic optimization algorithms. The new framework is based on a master-worker architecture where each worker runs a parallel program. The parallel implementation allows the sampling to proceed independently on multiple processors, and is demonstrated to scale well to over 100 vertices. It is highly suitable for clusters with an ever increasing number of cores per node. The new method has been applied successfully to the reparameterization of the TIP4P water model, achieving thermodynamic and structural results for liquid water that are as good as or better than the original model, with the advantage of a fully automated parameterization process. |
|---|---|
| AbstractList | This paper proposes a framework and new parallel algorithm for optimization of stochastic functions based on a downhill simplex algorithm. The function to be optimized is assumed to be subject to random noise, the variance of which decreases with sampling time, this is the situation expected for many real-world and simulation applications where results are obtained from sampling, and contain experimental error or random noise. The proposed optimization method is found to be comparable to previous stochastic optimization algorithms. The new framework is based on a master-worker architecture where each worker runs a parallel program. The parallel implementation allows the sampling to proceed independently on multiple processors, and is demonstrated to scale well to over 100 vertices. It is highly suitable for clusters with an ever increasing number of cores per node. The new method has been applied successfully to the reparameterization of the TIP4P water model, achieving thermodynamic and structural results for liquid water that are as good as or better than the original model, with the advantage of a fully automated parameterization process. |
| Author | Stuart, S J Chahal, D Trout, C J Goasguen, S |
| Author_xml | – sequence: 1 givenname: D surname: Chahal fullname: Chahal, D email: dchahal@clemson.edu organization: Sch. of Comput., Clemson Univ., Clemson, SC, USA – sequence: 2 givenname: S J surname: Stuart fullname: Stuart, S J email: ss@clemson.edu organization: Dept. of Chem., Clemson Univ., Clemson, SC, USA – sequence: 3 givenname: S surname: Goasguen fullname: Goasguen, S email: sebgoa@clemson.edu organization: Sch. of Comput., Clemson Univ., Clemson, SC, USA – sequence: 4 givenname: C J surname: Trout fullname: Trout, C J email: cjtstr@mail.francis.edu organization: Dept. of Chem., St. Francis Univ., Loretto, PA, USA |
| BookMark | eNotjMtKw0AYRkdUUGseQNzMA5g612RmWYpVoVIhFRcuyiT5p_0lyYRkCurTWy_f5nDO4rsgJ13ogJArzqacM3sLRYXQVfA6FezQhD4iic0NyzOrlbDaHv86V0IpY43Jzkgyju_sMC3yXJhz8jbbx9C6CPUNfXaDaxpo6KqP2OKXixg6GjwtYqh2boxY0cW-q37ySF9G7LbU0adQo0eoaYFt38AHnTXbMGDctZfk1LtmhOSfE7Je3K3nD-lydf84ny1TtCymUEorVMmqTErQGYPSGJBQg5RSMwYKSmEAvNQgvMuUU8Z75TivOZQMhJyQ679bBIBNP2Drhs-Nzqzkyshvw4VYpg |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/eScienceW.2010.25 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 9780769542959 0769542956 |
| EndPage | 103 |
| ExternalDocumentID | 5693148 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
| ID | FETCH-LOGICAL-i90t-eb3924b0c633e560eb88e3ede333500e4eb28eef35e2fa64a48ff4a11d1eb0e23 |
| IEDL.DBID | RIE |
| ISBN | 9781424489886 1424489881 |
| IngestDate | Wed Aug 27 03:14:50 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-eb3924b0c633e560eb88e3ede333500e4eb28eef35e2fa64a48ff4a11d1eb0e23 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_5693148 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-Dec. |
| PublicationDateYYYYMMDD | 2010-12-01 |
| PublicationDate_xml | – month: 12 year: 2010 text: 2010-Dec. |
| PublicationDecade | 2010 |
| PublicationTitle | 2010 Sixth IEEE International Conference on E-Science Workshops |
| PublicationTitleAbbrev | e-sciencew |
| PublicationYear | 2010 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000527728 ssib015832401 |
| Score | 1.4591786 |
| Snippet | This paper proposes a framework and new parallel algorithm for optimization of stochastic functions based on a downhill simplex algorithm. The function to be... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 98 |
| SubjectTerms | Computational modeling Noise Noise measurement Object oriented modeling Optimization parallel optimizaton Servers simplex Stochastic processes water model |
| Title | Automated, Parallel Optimization of Stochastic Functions Using a Modified Simplex Algorithm |
| URI | https://ieeexplore.ieee.org/document/5693148 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9zePCksonf5OBxdUnz0fQ4xOFB52ADBx5Gm7y4wrZK7cQ_36Trqgcv3pJAIOTr_V7yfr-H0I0wzGusJEEMIgq4M2lByqwICNeJ0gKUkhVR-DEajdRsFo9bqNdwYQCgCj6DW1-s_vJNrjf-qawvZMwcfN9De1Ekt1yt3d6hQnlpOdq8rxAROuCodlwuFStFdxJPdV3Wv5yUxH2oj9LLNtrLZ87-lW2lMjbDw_8N8wh1f1h7eNzYo2PUgnUHvQ42Ze5QKZgeHieFz5yyxM_unljVBEycWzwpc71IvGIzHjo7V21FXAUT4AQ_5SazDqjiSeaVhL_wYPmWF1m5WHXRdHg_vXsI6oQKQRaTMnB-s_O2UqIlY-CQDqRKAQMDjDFBCHDnZSsAywSENpE84cpanlBqKKQEQnaC2ut8DacISyO0c1QoxNJyZXjqRVVdNy2jFIyyZ6jj52X-vpXMmNdTcv538wU6CJsokUvULosNXKF9_VlmH8V1tc7fS-ymFQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEG4QTfSkBoxve_DISrt90D0SI8EISAKJJB7I7nYqmwBr1sX4822XBT148dY2adL0Nd-0832D0K3QzGmshF4AouVxa9K8iBnhER6HKhaglCyIwr3WYKAmk2BYQY0tFwYAiuAzuHPF4i9fp_HKPZU1hQyYhe87aFdw7pM1W2uze6hQTlyObl9YiPAtdFQbNpcKlKIbkaeyLst_TkqCJpSH6WUd7-VyZ__Kt1KYm87h_wZ6hOo_vD083FqkY1SBZQ29tld5anEp6AYehpnLnTLHz_amWJQUTJwaPMrTeBY6zWbcsZau2Iy4CCfAIe6nOjEWquJR4rSEv3B7_pZmST5b1NG48zC-73plSgUvCUjuWc_Z-lsRiSVjYLEOREoBAw2MMUEIcOtnKwDDBPgmlDzkyhgeUqopRAR8doKqy3QJpwhLLWLrqlAIpOFK88jJqtpusWxFoJU5QzU3L9P3tWjGtJyS87-bb9B-d9zvTXuPg6cLdOBvY0YuUTXPVnCF9uLPPPnIros1_wYgqalc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+Sixth+IEEE+International+Conference+on+E-Science+Workshops&rft.atitle=Automated%2C+Parallel+Optimization+of+Stochastic+Functions+Using+a+Modified+Simplex+Algorithm&rft.au=Chahal%2C+D&rft.au=Stuart%2C+S+J&rft.au=Goasguen%2C+S&rft.au=Trout%2C+C+J&rft.date=2010-12-01&rft.pub=IEEE&rft.isbn=9781424489886&rft.spage=98&rft.epage=103&rft_id=info:doi/10.1109%2FeScienceW.2010.25&rft.externalDocID=5693148 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424489886/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424489886/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424489886/sc.gif&client=summon&freeimage=true |

