Projecting on to the Multi-Layer Convolutional Sparse Coding Model

The recently proposed Multi-Layer Convolutional Sparse Coding (ML-CSC) model, consisting of a cascade of convolutional sparse layers, provides a new interpretation of Convolutional Neural Networks (CNNs). Under this framework, the forward pass in a CNN is equivalent to an algorithm that estimates ne...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) s. 6757 - 6761
Hlavní autoři: Sulam, Jeremias, Papyant, Vardan, Romano, Yaniv, Elad, Michael
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.04.2018
Témata:
ISSN:2379-190X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The recently proposed Multi-Layer Convolutional Sparse Coding (ML-CSC) model, consisting of a cascade of convolutional sparse layers, provides a new interpretation of Convolutional Neural Networks (CNNs). Under this framework, the forward pass in a CNN is equivalent to an algorithm that estimates nested sparse representation vectors from a given input signal. Despite having served as a pivotal connection between CNNs and sparse modeling, it is still unclear how to develop pursuit algorithms that serve this model exactly. In this work, we propose a new pursuit formulation by adopting a projection approach. We provide new and improved bounds on the stability of the resulting convolutional sparse representations, and we propose a multi-layer projection algorithm to retrieve them. We demonstrate this algorithm numerically, showing that it is superior to the Layered Basis Pursuit alternative in retrieving the representations of signals belonging to the ML-CSC model.
ISSN:2379-190X
DOI:10.1109/ICASSP.2018.8462552