Combining constraint programming and genetic algorithm for dynamic scheduling problems

This paper introduces a new method based on constraint programming (CP) and genetic algorithm (GA) for solving dynamic scheduling problems. The proposed approach allows us to handle scheduling problems with large sizes (i.e. search spaces are too large). Our idea is to break up the search space into...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International Conference on Logistics (Online) s. 19 - 24
Hlavní autoři: Elkhyari, Abdallah, Bellabdaoui, Adil
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.04.2017
Témata:
ISSN:2166-7373
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper introduces a new method based on constraint programming (CP) and genetic algorithm (GA) for solving dynamic scheduling problems. The proposed approach allows us to handle scheduling problems with large sizes (i.e. search spaces are too large). Our idea is to break up the search space into disjoined sub-spaces by the genetic algorithm. To each individual of the population is associated a sub-space. Each sub-space is represented by a sub-CSP which is easier to solve than the original scheduling problem. Our first experimentations are addressed to the Endoscopy Unit scheduling in dynamic way.
ISSN:2166-7373
DOI:10.1109/LOGISTIQUA.2017.7962867