UDE: Differential Evolution with Uniform Design

Differential evolution (DE) is significantly faster and robust for solving numerical optimization problem and is more likely to find true global optimum of functions. It has solved many real-world optimization problems. However, DE has sometimes been shown slow convergence and low accuracy of soluti...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2010 3rd International Symposium on Parallel Architectures, Algorithms and Programming s. 239 - 246
Hlavní autori: Lei Peng, Yuanzhen Wang, Guangming Dai
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.12.2010
Predmet:
ISBN:1424494826, 9781424494828
ISSN:2168-3034
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Differential evolution (DE) is significantly faster and robust for solving numerical optimization problem and is more likely to find true global optimum of functions. It has solved many real-world optimization problems. However, DE has sometimes been shown slow convergence and low accuracy of solutions when the solution space is hard to explore. Population initialization is very important to the performance of differential evolution. A good initialization method can help in finding better solutions and improving convergence rate. In this paper, a uniform-differential evolution algorithm (UDE) is proposed. It incorporates uniform design initialization method into differential evolution to accelerate its convergence speed and improve the stability. UDE is compared with other two algorithms of standard differential evolution (SDE) and orthogonal differential evolution (ODE). Experiments have been conducted on 23 benchmark problems of diverse complexities. The results indicate that our approach has the stronger ability and higher calculation accuracy to find better solutions than other two algorithms.
AbstractList Differential evolution (DE) is significantly faster and robust for solving numerical optimization problem and is more likely to find true global optimum of functions. It has solved many real-world optimization problems. However, DE has sometimes been shown slow convergence and low accuracy of solutions when the solution space is hard to explore. Population initialization is very important to the performance of differential evolution. A good initialization method can help in finding better solutions and improving convergence rate. In this paper, a uniform-differential evolution algorithm (UDE) is proposed. It incorporates uniform design initialization method into differential evolution to accelerate its convergence speed and improve the stability. UDE is compared with other two algorithms of standard differential evolution (SDE) and orthogonal differential evolution (ODE). Experiments have been conducted on 23 benchmark problems of diverse complexities. The results indicate that our approach has the stronger ability and higher calculation accuracy to find better solutions than other two algorithms.
Author Guangming Dai
Yuanzhen Wang
Lei Peng
Author_xml – sequence: 1
  surname: Lei Peng
  fullname: Lei Peng
  email: penglei0114@gmail.com
  organization: Coll. of Comput. Sci., Huazhong Univ. of Sci. & Technol., Wuhan, China
– sequence: 2
  surname: Yuanzhen Wang
  fullname: Yuanzhen Wang
  email: wangyz2005@163.com
  organization: Coll. of Comput. Sci., Huazhong Univ. of Sci. & Technol., Wuhan, China
– sequence: 3
  surname: Guangming Dai
  fullname: Guangming Dai
  email: gmdai@cug.edu.cn
  organization: Sch. of Comput., China Univ. of Geosci., Wuhan, China
BookMark eNotjktLw0AURi_Ygk3tzp2b_IG098573IWmPqBgF-26xM6MjqQTSaLivzeiq8MHh8OXwSS1yQNcEy6J0K52ZblbMhynogvISDAhrDBMTWDGSJmCIxdTyH4Vy7W28hIWff-GiJyMNQpnsDpUm9u8iiH4zqch1k2--WybjyG2Kf-Kw2t-SDG03TmvfB9f0hVMQ930fvHPOezvNvv1Q7F9un9cl9siWhwKT_L5JAQjOnkpmbM8aGm0E6J2WimvyOFIGQwxJzVHzcZ7fBSDJGccn8PNXzZ674_vXTzX3fdRapJoLP8BRTREJQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PAAP.2010.61
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 246
ExternalDocumentID 5715089
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-e15bc44211ce552d93f7587d44ad766e61d07665f812d57307277932d9f51d8d3
IEDL.DBID RIE
ISBN 1424494826
9781424494828
ISSN 2168-3034
IngestDate Wed Aug 27 03:23:11 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2010937795
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-e15bc44211ce552d93f7587d44ad766e61d07665f812d57307277932d9f51d8d3
PageCount 8
ParticipantIDs ieee_primary_5715089
PublicationCentury 2000
PublicationDate 2010-Dec.
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-Dec.
PublicationDecade 2010
PublicationTitle 2010 3rd International Symposium on Parallel Architectures, Algorithms and Programming
PublicationTitleAbbrev paap
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003189860
ssj0000527807
Score 1.498071
Snippet Differential evolution (DE) is significantly faster and robust for solving numerical optimization problem and is more likely to find true global optimum of...
SourceID ieee
SourceType Publisher
StartPage 239
SubjectTerms Accuracy
Algorithm design and analysis
Benchmark testing
Chaos
Convergence
Design methodology
differential evolution
global optimization
Optimization
orthogonal design method
uniform design method
Title UDE: Differential Evolution with Uniform Design
URI https://ieeexplore.ieee.org/document/5715089
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb4JAEJ2o6aEn22rT7-yhx25lYT97M1XTk-FgE29G2CExabSx6u_vsCBeeukJlhDCwg7zZngzD-BZLEUscjIk45TkMokTbgl3cJ1pK9Ggz20WxCbMdGrnc5e24KWphUHEQD7D13I3_Mv3m3xfpsooeC-7l7s2tI3RVa1Wk0-JVGxsHcqUY1qrzoYi4Vhoy-lLLY91XU4Spj62e6rHtiHFu0E6HKYV6Su0zj6JrgSfM-n-724voH8q3mNp45YuoYXrK-ge1RtYbcw9GHyOxm9sVAukkKF_sfGhXoisTM8ywqMlpGWjwPLow2wynr1_8Fo-ga9ctOMoVJZLSQFejkrF3iUFxQbGS7n0RmvUwke0VQW5eK_I0AnJkLHSiYUS3vrkGjrrzRpvgOnCJr5AYegS0mbCZpjQgytUkkXaoriFXjn9xXfVIGNRz_zu78P3cB43nJAH6Oy2e3yEs_ywW_1sn8Jb_QUUY5hd
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFH5BNNETKhh_24NHJ-vWdq03IhCMSHbAhBtha5eQmGEQ-Pt9LWVcvHjauizLuvXb-7HvvQ_gkc5oRHMEUqI4C1gcxYFEvyMQmZDMJEbnMnNiE8loJCcTldbgqaqFMcY48pl5trvuX75e5GubKsPg3XYvVwdwaJWzfLVWlVEJeZRIH8zYMa5WJV2ZcESFDPBbzXaVXYqhV71r-OTHsqLFq3ba6aRb2pdrnr2XXXFWp9_43_2eQmtfvkfSyjCdQc2U59DY6TcQD-cmtD-7vRfS9RIpCPUv0tv4pUhsgpagR2qdWtJ1PI8WjPu98esg8AIKwVyFq8BQnuWMYYiXG84jreICo4NEMzbTiRBGUB3ilhdo5DVHqKMvg3DFEwtOtdTxBdTLRWkugYhCxrowNMFLMJlRmZkYH1zB4ywU0tAraNrpT7-3LTKmfubXfx9-gOPB-GM4Hb6N3m_gJKoYIrdQXy3X5g6O8s1q_rO8d2_4F0DYm6Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+3rd+International+Symposium+on+Parallel+Architectures%2C+Algorithms+and+Programming&rft.atitle=UDE%3A+Differential+Evolution+with+Uniform+Design&rft.au=Lei+Peng&rft.au=Yuanzhen+Wang&rft.au=Guangming+Dai&rft.date=2010-12-01&rft.pub=IEEE&rft.isbn=9781424494828&rft.issn=2168-3034&rft.spage=239&rft.epage=246&rft_id=info:doi/10.1109%2FPAAP.2010.61&rft.externalDocID=5715089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-3034&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-3034&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-3034&client=summon