Reconstruction of handwritten digit images using autoencoder neural networks

This paper compares the performances of three types of autoencoder neural networks, namely, the traditional autoencoder with restricted Boltzmann machine (RBM), the stacked autoencoder without RBM and the stacked autoencoder with RBM based on the efficiency for reconstruction of handwritten digit im...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2008 Canadian Conference on Electrical and Computer Engineering s. 000465 - 000470
Hlavní autori: Tan, C.C., Eswaran, C.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.05.2008
Predmet:
ISBN:9781424416424, 1424416426
ISSN:0840-7789
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper compares the performances of three types of autoencoder neural networks, namely, the traditional autoencoder with restricted Boltzmann machine (RBM), the stacked autoencoder without RBM and the stacked autoencoder with RBM based on the efficiency for reconstruction of handwritten digit images. Experiments are performed to determine the reconstruction error in all the three cases using the same architecture configuration and training algorithm. The results show that the RBM stacked autoencoder gives better performance in terms of the reconstruction error compared to the other two architectures. We also show that all the architectures outperform PCA in terms of the reconstruction error.
AbstractList This paper compares the performances of three types of autoencoder neural networks, namely, the traditional autoencoder with restricted Boltzmann machine (RBM), the stacked autoencoder without RBM and the stacked autoencoder with RBM based on the efficiency for reconstruction of handwritten digit images. Experiments are performed to determine the reconstruction error in all the three cases using the same architecture configuration and training algorithm. The results show that the RBM stacked autoencoder gives better performance in terms of the reconstruction error compared to the other two architectures. We also show that all the architectures outperform PCA in terms of the reconstruction error.
Author Tan, C.C.
Eswaran, C.
Author_xml – sequence: 1
  givenname: C.C.
  surname: Tan
  fullname: Tan, C.C.
  organization: Centre for Multimedia & Distrib. Comput., Multimedia Univ., Cyberjaya
– sequence: 2
  givenname: C.
  surname: Eswaran
  fullname: Eswaran, C.
  organization: Centre for Multimedia & Distrib. Comput., Multimedia Univ., Cyberjaya
BookMark eNpVkM1KxDAUhSOO4Mw4L6CbvEDHmzZtkqWU-gMFQd0PmeamRsdEkpTBt7fgbFx9nM3hO2dFFj54JOSawZYxULdt27XdtgSQW143vBbijGyUkIyXnLOGV-z8Xy75gixBciiEkOqSrFL6AAAuG74k_QsOwaccpyG74Gmw9F17c4wuZ_TUuNFl6r70iIlOyfmR6ikH9EMwGKnHKerDjHwM8TNdkQurDwk3J67J63331j4W_fPDU3vXF05BLhA0MqE06rLkVqGyqlYV6nkc1APAIMt9jRoV7jUaxgbDLLPGNFqoRslqTW7-Wh0i7r7jbBd_dqcrql_leVRi
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CCECE.2008.4564577
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424416431
1424416434
EndPage 000470
ExternalDocumentID 4564577
Genre orig-research
GroupedDBID 29F
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i90t-e0ae179aea224f9e9f9593ea11005c00c82b5eae9ebaed11cd1f1fdd6a796983
IEDL.DBID RIE
ISBN 9781424416424
1424416426
ISSN 0840-7789
IngestDate Wed Aug 27 02:14:57 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-e0ae179aea224f9e9f9593ea11005c00c82b5eae9ebaed11cd1f1fdd6a796983
PageCount 6
ParticipantIDs ieee_primary_4564577
PublicationCentury 2000
PublicationDate 2008-May
PublicationDateYYYYMMDD 2008-05-01
PublicationDate_xml – month: 05
  year: 2008
  text: 2008-May
PublicationDecade 2000
PublicationTitle 2008 Canadian Conference on Electrical and Computer Engineering
PublicationTitleAbbrev CCECE
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0004864
ssj0000453620
Score 1.4271533
Snippet This paper compares the performances of three types of autoencoder neural networks, namely, the traditional autoencoder with restricted Boltzmann machine...
SourceID ieee
SourceType Publisher
StartPage 000465
SubjectTerms Autoencoder
Backpropagation
Decoding
dimensionality reduction
Distributed computing
Feedforward neural networks
Image reconstruction
Information technology
Multi-layer neural network
Multimedia computing
neural network
Neural networks
Principal component analysis
Restricted Boltzmann Machine
Title Reconstruction of handwritten digit images using autoencoder neural networks
URI https://ieeexplore.ieee.org/document/4564577
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ25T8MwFMattmKAhaNF3PLASKjdHLbnqBVDVVUCoW6Vj-cqEjSoTeHfx3bSFiQWphxLomfFz-_l-35G6F4baYWkKkq08d0qJiIlwUbKEAEpUSILeyy9jtlkwmczMW2hh50XBgCC-Awe_Wn4l29KvfGtsn5AnzDWRm3GstqrteunuKWJm4vJ3hPJa3QU94o5xsXW1OXKg0G2ZT0118nWTUNEP8-H-bDWWDaP-7XvSkg7o-P_vfAJ6u39e3i6y0ynqAXLM3T0Az3YRWNfd-7psbi02PfQv1ZF5VbR2BSLosLFu5tt1thr4xdYbqrSUy8NrLCnYMo3dwga8nUPPY-GL_lT1OysEBWCVBEQCe5DlCBdArcChPV4YpAeH5dqQjQfqBQkCHDjZijVhlpqjckkE5ng8TnqLMslXCDMUxYrFtvYJDKxnMospVorq1wVk2nKL1HXR2X-UaMz5k1Arv6-fY0OazmG1xPeoI6LAdyiA_1ZFevVXRjvb45Up0c
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1JT8MwEIWtUpCAC0uL2PGBI6Fxs9g-R0VFhKoSFeqt8jKuIkGD2hT-PnaStiBx4ZTlkshWPJ7Je98gdKu0MFwQ6YVKu2oV5Z4UYDypfQ6RL3lc9lh6TelgwMZjPmygu7UXBgBK8Rncu9PyX77O1dKVyjol-oTSLbTtOmeRyq21rqjYzYldjf2NK5JV8CjmNHOU8ZWtyyYI3XhFe6qvw5WfxuedJOklvUplWT_wV-eVMvA8HPzvlQ9Re-Pgw8N1bDpCDZgdo_0f8MEWSl3mueHH4txgV0X_mmeF3UdjnU2zAmfvdr1ZYKeOn2KxLHLHvdQwx46DKd7soVSRL9ro5aE3Svpe3VvBy7hfeOALsJ-iAGFDuOHAjQMUg3AAuUj5vmJdGYEADnbmNCFKE0OM1rGgPOYsOEHNWT6DU4RZRANJAxPoUISGERFHRClppM1jYkXYGWq5UZl8VPCMST0g53_fvkG7_dFzOkkfB08XaK8SZzh14SVq2vGAK7SjPotsMb8u5_4bdhyqjg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+Canadian+Conference+on+Electrical+and+Computer+Engineering&rft.atitle=Reconstruction+of+handwritten+digit+images+using+autoencoder+neural+networks&rft.au=Tan%2C+C.C.&rft.au=Eswaran%2C+C.&rft.date=2008-05-01&rft.pub=IEEE&rft.isbn=9781424416424&rft.issn=0840-7789&rft.spage=000465&rft.epage=000470&rft_id=info:doi/10.1109%2FCCECE.2008.4564577&rft.externalDocID=4564577
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0840-7789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0840-7789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0840-7789&client=summon