Estimation and prediction for tracking trajectories in cellular networks using the recursive prediction error method
After considering the intrinsically erratic behavior of nodes in mobile networks, mobility prediction has been extensively used to improve the quality of services. Many methods have been proposed, inherited from technologies developed for signal processing and self-learning techniques and/or stochas...
Uloženo v:
| Vydáno v: | 2010 IEEE International Symposium on A World of Wireless, Mobile and Multimedia Networks s. 1 - 7 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.06.2010
|
| Témata: | |
| ISBN: | 9781424472642, 1424472644 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | After considering the intrinsically erratic behavior of nodes in mobile networks, mobility prediction has been extensively used to improve the quality of services. Many methods have been proposed, inherited from technologies developed for signal processing and self-learning techniques and/or stochastic methods. Among the latter the Extended Kalman Filter (EKF), using the received power as a measurement, is the most used. However, because the measure is not linear with distance, the EKF loses stability under certain circumstances and must be reset. Moreover, it requires the a priori knowledge of disturbances and measurement noise covariance matrices which are difficult to obtain. In this work, from the non-linear model, we derive a stable time-variant first order auto-regressive and moving average model (ARMA), and propose a prediction mechanism based on the well-known Recursive Prediction Error Method (RPEM) to predict the mobile location and then compare it with (EKF). Simulation results show that RPEM has a lower prediction error variance in most cases and similar in others to that obtained with EKF with the additional advantages that it has guaranteed stability and does not require the a priori knowledge of disturbances and measurement noise covariance matrices as in EKF. |
|---|---|
| AbstractList | After considering the intrinsically erratic behavior of nodes in mobile networks, mobility prediction has been extensively used to improve the quality of services. Many methods have been proposed, inherited from technologies developed for signal processing and self-learning techniques and/or stochastic methods. Among the latter the Extended Kalman Filter (EKF), using the received power as a measurement, is the most used. However, because the measure is not linear with distance, the EKF loses stability under certain circumstances and must be reset. Moreover, it requires the a priori knowledge of disturbances and measurement noise covariance matrices which are difficult to obtain. In this work, from the non-linear model, we derive a stable time-variant first order auto-regressive and moving average model (ARMA), and propose a prediction mechanism based on the well-known Recursive Prediction Error Method (RPEM) to predict the mobile location and then compare it with (EKF). Simulation results show that RPEM has a lower prediction error variance in most cases and similar in others to that obtained with EKF with the additional advantages that it has guaranteed stability and does not require the a priori knowledge of disturbances and measurement noise covariance matrices as in EKF. |
| Author | Milocco, R H Boumerdassi, S |
| Author_xml | – sequence: 1 givenname: R H surname: Milocco fullname: Milocco, R H email: milocco@uncoma.edu.ar organization: GCAyS, UNCOMA, Neuquen, Argentina – sequence: 2 givenname: S surname: Boumerdassi fullname: Boumerdassi, S email: selma.boumerdassi@cnam.fr organization: CNAM, CEDRIC, Paris, France |
| BookMark | eNpNkMtOwzAQRY0ACVryBd34B1rs-BF7iarykFplAVKXleNMqNvUqWwHxN8TSpGYzZ07d3SkmRG68p0HhCaUzCgl-n5drlflapaTYSAE45qqCzSiPOe8yCWTlyjThfrzPL9BWYw7MhQXQ65vUVrE5A4muc5j42t8DFA7e7JNF3AKxu6df_9pdmBTFxxE7Dy20LZ9awL2kD67sI-4j6e9LeAAtg_RfcB_GoQw8A6Qtl19h64b00bIzjpGr4-Lt_nzdFk-vcwfllOnSZrWjcqhVpJyK4UwlDFuKbFGKkJUxZQ0rOGc0IYW1HJpRKUpVEpwUxlpCBujyS_VAcDmGIYzw9fm_Cb2Df8BYMI |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/WOWMOM.2010.5534918 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1424472636 9781424472635 9781424472659 1424472652 |
| EndPage | 7 |
| ExternalDocumentID | 5534918 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIB RIC RIE RIL |
| ID | FETCH-LOGICAL-i90t-df82ed8614c655a1334c10ca68008b386a3f4401f171c46a5b91eb854aba6a03 |
| IEDL.DBID | RIE |
| ISBN | 9781424472642 1424472644 |
| IngestDate | Wed Aug 27 02:47:46 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-df82ed8614c655a1334c10ca68008b386a3f4401f171c46a5b91eb854aba6a03 |
| PageCount | 7 |
| ParticipantIDs | ieee_primary_5534918 |
| PublicationCentury | 2000 |
| PublicationDate | 2010-June |
| PublicationDateYYYYMMDD | 2010-06-01 |
| PublicationDate_xml | – month: 06 year: 2010 text: 2010-June |
| PublicationDecade | 2010 |
| PublicationTitle | 2010 IEEE International Symposium on A World of Wireless, Mobile and Multimedia Networks |
| PublicationTitleAbbrev | WOWMOM |
| PublicationYear | 2010 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000452639 |
| Score | 1.4478519 |
| Snippet | After considering the intrinsically erratic behavior of nodes in mobile networks, mobility prediction has been extensively used to improve the quality of... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Acceleration Estimation Mathematical model Mobile communication Mobile computing Noise Prediction algorithms |
| Title | Estimation and prediction for tracking trajectories in cellular networks using the recursive prediction error method |
| URI | https://ieeexplore.ieee.org/document/5534918 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKxcAEqEW85YER0zjxKzNqxdKHBFK7VX5FlCGt3JTfjy9JC0gsbLYVnayzorv77rs7hB4oty6jhSO5VY4wXWiiBddEJsZpBw6EMvWwCTmZqMUin3XQ46EWxntfk8_8EyzrXL5b2x1AZQPOM5ZTdYSOpBRNrdYBT4HW4NHa7mu3JBj6fUundp-2XYdokg_m0_l4Om6oXa3YX_NVavMyOv3fxc5Q_7tOD88OFugcdXzZQ9Uw_rVNQSLWpcObALmYehsdVFwFbQEeh8VHDdnHWBmvSgwQPnBScdkww7cYOPHxu3ePA6DyQHT_Kc2HEOU1I6j76HU0fHt-Ie1sBbLKk4q4QqXeqWibreBcx0CVWZpYLaL_qEymhM4KFkOvgkpqmdDc5NQbxZk2Wugku0Ddcl36S4SjXo1KMy6YSJiHtKHMvI1hUUGtTwtzhXqgr-WmaZ6xbFV1_ffxDTpp0vMAc9yibhV2_g4d289qtQ339Yt_AeSRq7k |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7GQIIToA3xJgeOlDVtkqZntAnEXhKTttuUV8U4dFPW8fuJ226AxIVbElVW5Kiy_fmzjdA9YdrEJDNBqoUJqMxkIDmTQRIqIw04EEKVwyaS4VDMZum4gR52tTDW2pJ8Zh9hWebyzVJvACrrMBbTlIg9tA-Ts-pqrR2iAs3Bvb3dVm8lYOq3TZ3qfVT3HSJh2pmOpoPRoCJ31YJ_TVgpDUzv-H9XO0Ht70o9PN7ZoFPUsHkLFV3_31YliVjmBq8cZGPKrXdRceGkBoAcFh8laO-jZbzIMYD4wErFecUNX2Ngxfvv3i12gMsD1f2nNOucl1cNoW6jt1538vQc1NMVgkUaFoHJRGSN8NZZc8akD1WpJqGW3HuQQsWCyzijPvjKSEI05ZKplFglGJVKchnGZ6iZL3N7jrDXqxJRzDjlIbWQOExiq31glBFto0xdoBboa76q2mfMa1Vd_n18hw6fJ4P-vP8yfL1CR1WyHkCPa9Qs3MbeoAP9WSzW7rZ8_S8GrK8C |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+International+Symposium+on+A+World+of+Wireless%2C+Mobile+and+Multimedia+Networks&rft.atitle=Estimation+and+prediction+for+tracking+trajectories+in+cellular+networks+using+the+recursive+prediction+error+method&rft.au=Milocco%2C+R+H&rft.au=Boumerdassi%2C+S&rft.date=2010-06-01&rft.pub=IEEE&rft.isbn=9781424472642&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FWOWMOM.2010.5534918&rft.externalDocID=5534918 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424472642/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424472642/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424472642/sc.gif&client=summon&freeimage=true |

