A Multiobjective Evolutionary Algorithm for Solving Vehicle Routing Problem with Stochastic Demand

This paper considers the routing of vehicles with limited capacity from a central depot to a set of geographically dispersed customers where actual demand is revealed only when the vehicle arrives at the customer. The solution to this vehicle routing problem with stochastic demand (VRPSD) involves t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2006 IEEE International Conference on Evolutionary Computation s. 1370 - 1377
Hlavní autori: Cheong, C.Y., Tan, K.C., Liu, D.K., Xu, J.X.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 2006
Predmet:
ISBN:9780780394872, 0780394879
ISSN:1089-778X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper considers the routing of vehicles with limited capacity from a central depot to a set of geographically dispersed customers where actual demand is revealed only when the vehicle arrives at the customer. The solution to this vehicle routing problem with stochastic demand (VRPSD) involves the optimization of complete routing schedules with minimum travel distance, driver remuneration, and number of vehicles, subject to a number of constraints such as vehicle time window and capacity. To solve such a multiobjective combinatorial optimization problem, this paper presents a multiobjective evolutionary algorithm that incorporates two VRPSD-specific heuristics for local exploitation and a route simulation method to evaluate the fitness of solutions. A novel way of assessing the quality of solutions to the VRPSD on top of comparing their expected costs is also proposed. It is shown that the algorithm is capable of finding useful tradeoff solutions which are robust to the stochastic nature of the problem.
AbstractList This paper considers the routing of vehicles with limited capacity from a central depot to a set of geographically dispersed customers where actual demand is revealed only when the vehicle arrives at the customer. The solution to this vehicle routing problem with stochastic demand (VRPSD) involves the optimization of complete routing schedules with minimum travel distance, driver remuneration, and number of vehicles, subject to a number of constraints such as vehicle time window and capacity. To solve such a multiobjective combinatorial optimization problem, this paper presents a multiobjective evolutionary algorithm that incorporates two VRPSD-specific heuristics for local exploitation and a route simulation method to evaluate the fitness of solutions. A novel way of assessing the quality of solutions to the VRPSD on top of comparing their expected costs is also proposed. It is shown that the algorithm is capable of finding useful tradeoff solutions which are robust to the stochastic nature of the problem.
Author Xu, J.X.
Cheong, C.Y.
Liu, D.K.
Tan, K.C.
Author_xml – sequence: 1
  givenname: C.Y.
  surname: Cheong
  fullname: Cheong, C.Y.
  organization: Nat. Univ. of Singapore, Singapore
– sequence: 2
  givenname: K.C.
  surname: Tan
  fullname: Tan, K.C.
  organization: Nat. Univ. of Singapore, Singapore
– sequence: 3
  givenname: D.K.
  surname: Liu
  fullname: Liu, D.K.
– sequence: 4
  givenname: J.X.
  surname: Xu
  fullname: Xu, J.X.
BookMark eNotUN9LwzAYDDjBbe5d8CX_QGfSpPnxOOqcwkRxQ3wbSftly0gbabuJ_70BBwfHdxzHfTdBoza2gNAdJXNKiX4ol-U8J0TMqVCKC3WFZloqksA0VzIfoTElSmdSqq8bNOn7IyGUF1SPkV3g11MYfLRHqAZ_Brw8x3BKQmu6X7wI-9j54dBgFzu8ieHs2z3-hIOvAuCPmIzpfu-iDdDgn-TEmyFWB9MPvsKP0Ji2vkXXzoQeZheeou3Tcls-Z-u31Uu5WGdekyGroc5pZawSXDBRK51bl0shbGFrwk0BOXApU2tnmVO2MJQzxyhAVTulhWRTdP8f6wFg9935Jj2wuyzC_gBELlhY
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CEC.2006.1688468
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EndPage 1377
ExternalDocumentID 1688468
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IE
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
CS3
EBS
EJD
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
ID FETCH-LOGICAL-i90t-ded21cab864636d892bf2766b5bd04a5e2e477145fb3f8b5a143f31eecdf89673
IEDL.DBID RIE
ISBN 9780780394872
0780394879
ISSN 1089-778X
IngestDate Wed Aug 27 01:33:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-ded21cab864636d892bf2766b5bd04a5e2e477145fb3f8b5a143f31eecdf89673
PageCount 8
ParticipantIDs ieee_primary_1688468
PublicationCentury 2000
PublicationDate 20060000
PublicationDateYYYYMMDD 2006-01-01
PublicationDate_xml – year: 2006
  text: 20060000
PublicationDecade 2000
PublicationTitle 2006 IEEE International Conference on Evolutionary Computation
PublicationTitleAbbrev CEC
PublicationYear 2006
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014519
ssj0000394734
Score 1.6552993
Snippet This paper considers the routing of vehicles with limited capacity from a central depot to a set of geographically dispersed customers where actual demand is...
SourceID ieee
SourceType Publisher
StartPage 1370
SubjectTerms Constraint optimization
Costs
Evolutionary computation
Optimization methods
Robustness
Routing
Stochastic processes
Time factors
Transportation
Vehicle driving
Title A Multiobjective Evolutionary Algorithm for Solving Vehicle Routing Problem with Stochastic Demand
URI https://ieeexplore.ieee.org/document/1688468
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6AeNALChh_pwePTkrXru2RIMSDISQQwo20aysY2AwOEv97222gJl68rcuSLS9vfa_fe9_3ALiXTCKisQmQZCIgitBACRIGLrpbtyVrrHJ-xfSFDYd8NhOjCng4cGGMMXnzmXn0l3ktX6fx1kNl7U7EXbjkVVBljBVcrQOegkJBmJc6KysIXjalaK4XLoPks_zIzv1TnIlSeWe_xvv6JRLtXr9XlCjKl_2aupIHnUH9f597Clrf7D04OsSlM1AxSQPU9-MbYPk3N8DJDy3CJlBdmJNxU_VW7IGwvyvdUm4-YXf1mm6W2WINXZYLx-nKAxFwahbe76DvK_LrUTGeBnp0F46zNF5IrwMNn8xaJroFJoP-pPcclAMYgqVAWaCNxp1YKh55VTHNBVYWsyhSVGlEJDXYEMacpa0KLVdUutzLhh1jYm25iFh4DmpJmpgLALXmjLszr9CGEhsirq0glFIlMbIijC5B09tv_l5IbMxL0139ffsaHH8jITeglm225hYcxbts-bG5y_3iCxGbs2c
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED50CurL_DHxt3nw0WqXJk3yOOaG4hyDDdnbSJrETWYrsw78723ablPwxbemFFqOa-7y3X3fAVxJJn2isfF8yYRHFKGeEiTwsuhusy1ZY5XzK547rNvlw6HorcH1kgtjjMmbz8yNu8xr-TqJPh1UdlsPeRYu-TpsUEJwvWBrLREVPxCEObGzsobghFOK9nqR5ZB8mB_auXuKM1Fq7yzWeFHB9MVts9UsihTl637NXcnDTrv6vw_ehdqKv4d6y8i0B2sm3ofqYoADKv_nfdj5oUZ4AKqBcjpuol6LXRC15qVjytkXakxfktkkHb-hLM9F_WTqoAj0bMbO85DrLHLrXjGgBjl8F_XTJBpLpwSN7sybjHUNBu3WoHnvlSMYvInwU08bjeuRVDx0umKaC6wsZmGoqNI-kdRgQxjLLG1VYLmiMsu-bFA3JtKWi5AFh1CJk9gcAdKaM56deoU2lNjA59oKQilVEvtWBOExHDj7jd4LkY1RabqTv29fwtb94Kkz6jx0H09he4WLnEElnX2ac9iM5unkY3aR-8g3mHC2rg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2006+IEEE+International+Conference+on+Evolutionary+Computation&rft.atitle=A+Multiobjective+Evolutionary+Algorithm+for+Solving+Vehicle+Routing+Problem+with+Stochastic+Demand&rft.au=Cheong%2C+C.Y.&rft.au=Tan%2C+K.C.&rft.au=Liu%2C+D.K.&rft.au=Xu%2C+J.X.&rft.date=2006-01-01&rft.pub=IEEE&rft.isbn=9780780394872&rft.issn=1089-778X&rft.spage=1370&rft.epage=1377&rft_id=info:doi/10.1109%2FCEC.2006.1688468&rft.externalDocID=1688468
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon