Fast generalized reduced gradient algorithm based data reconciliation model

More and more industrial production companies apply computer to process control, operation optimization and performance evaluation, which significantly increases the amount of data collected. Accurate measurement data can provide solid foundation for monitoring, optimization, scheduling, and decisio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society s. 8791 - 8795
Hlavní autoři: Song, Xiaohan, Zhao, Jun, Wang, Wei
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2017
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract More and more industrial production companies apply computer to process control, operation optimization and performance evaluation, which significantly increases the amount of data collected. Accurate measurement data can provide solid foundation for monitoring, optimization, scheduling, and decision analysis. However, measurement data is inevitably interfered by errors from multiple processes. This kind of interference makes measurement data deviate from real value and cannot meet some of the conservation laws and process constraints, which can make the production performance severely deteriorated. This paper proposed a fast Generalized Reduced Gradient (GRG) algorithm based data reconciliation model, which focuses on nonlinear data reconciliation problems. This method is on the basis of GRG algorithm, which can stably converge close enough to the global optimal solution, and Particle Swarm Optimization (PSO) algorithm is used in the early stage to accelerate the convergence. Iteration step size and selection of base variables are also optimized to accelerate and improve GRG. The proposed method can reduce the computation time under the premise of ensuring accuracy. Experiments on actual industrial data showed that the proposed method could solve the data reconciliation problem efficiently to provide effective data support for production scheduling.
AbstractList More and more industrial production companies apply computer to process control, operation optimization and performance evaluation, which significantly increases the amount of data collected. Accurate measurement data can provide solid foundation for monitoring, optimization, scheduling, and decision analysis. However, measurement data is inevitably interfered by errors from multiple processes. This kind of interference makes measurement data deviate from real value and cannot meet some of the conservation laws and process constraints, which can make the production performance severely deteriorated. This paper proposed a fast Generalized Reduced Gradient (GRG) algorithm based data reconciliation model, which focuses on nonlinear data reconciliation problems. This method is on the basis of GRG algorithm, which can stably converge close enough to the global optimal solution, and Particle Swarm Optimization (PSO) algorithm is used in the early stage to accelerate the convergence. Iteration step size and selection of base variables are also optimized to accelerate and improve GRG. The proposed method can reduce the computation time under the premise of ensuring accuracy. Experiments on actual industrial data showed that the proposed method could solve the data reconciliation problem efficiently to provide effective data support for production scheduling.
Author Wang, Wei
Zhao, Jun
Song, Xiaohan
Author_xml – sequence: 1
  givenname: Xiaohan
  surname: Song
  fullname: Song, Xiaohan
  email: songxiaohan@mail.dlut.edu.cn
  organization: School of Control Science and Engineering, Dalian University of Technology, Dalian, China
– sequence: 2
  givenname: Jun
  surname: Zhao
  fullname: Zhao, Jun
  email: zhaoj@dlut.edu.cn
  organization: School of Control Science and Engineering, Dalian University of Technology, Dalian, China
– sequence: 3
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  email: wangwei@dlut.edu.cn
  organization: School of Control Science and Engineering, Dalian University of Technology, Dalian, China
BookMark eNotj7FOwzAURY0EA5T-AF38Awl5dmwnI4paqFrRpXv1Yr-klhIHOWaArycSnc5wj450n9h9mAIx9gJFDlDUr_ttc_rMRQEmrwQYVao7tq5NBUpWGkAY8cgOO5wT7ylQxMH_kuOR3Ldd2Ed0nkLiOPRT9Ok68hbnZXCYcLHsFKwfPCY_BT5OjoZn9tDhMNP6xhU777bn5iM7nt73zdsx83WRMie7kioglFohtJq0Vda40mksW0NyoWsRUGmlFkGSE0qjaIuu7LC2Uq7Y5j_riejyFf2I8edyeyj_ADWRTEE
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IECON.2017.8217545
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781538611272
1538611279
EndPage 8795
ExternalDocumentID 8217545
Genre orig-research
GroupedDBID 6IE
6IH
CBEJK
RIE
RIO
ID FETCH-LOGICAL-i90t-d3f4e81ea365a1b6e6c5c7d4d6a4b7e3d6adba1a56555a13ed256a2b0f4fa9c33
IEDL.DBID RIE
IngestDate Wed Aug 20 06:21:00 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-d3f4e81ea365a1b6e6c5c7d4d6a4b7e3d6adba1a56555a13ed256a2b0f4fa9c33
PageCount 5
ParticipantIDs ieee_primary_8217545
PublicationCentury 2000
PublicationDate 2017-Oct.
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-Oct.
PublicationDecade 2010
PublicationTitle IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society
PublicationTitleAbbrev IECON
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.647705
Snippet More and more industrial production companies apply computer to process control, operation optimization and performance evaluation, which significantly...
SourceID ieee
SourceType Publisher
StartPage 8791
SubjectTerms Accuracy
Data models
data reconciliation
GRG
Job shop scheduling
nonlinear programming
Optimization
Performance evaluation
Process control
Processor scheduling
Production
Programming
PSO
Solids
Title Fast generalized reduced gradient algorithm based data reconciliation model
URI https://ieeexplore.ieee.org/document/8217545
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5t8eBJpRXf5ODRtLubbB5nsShK6aGH3koes3WhtrLdevDXm2TXiuDF04QwEJiQzEzyfTMI3SZ5wgQYQbhRjjBqEqJNLgkvsiw1PgSWRSQKv4jJRM7natpBd3suDABE8BkMwzD-5buN3YWnspH08bP3-F3UFUI0XK1vHkyiRk-h9V8Aa4lhq_irY0p0GOOj_y11jAY_zDs83fuUE9SBdR89j_W2xsumQHT5CQ5XoeCql8sqIrZqrFfLjU_zX99wcEsOB-AnjsmuLVeN9XFsejNAs_HD7P6RtE0QSKmSmjhaMJApaMpznRoO3OZWOOa4ZkYA9dIZnWofl-VegYLzMYzOTFKwQitL6SnqrTdrOENYJTbXYGxBZca0ksbfkU4Lf2bTzALl56gf7LB4b8pcLFoTXPw9fYkOg6kbXNsV6tXVDq7Rgf2oy211E_fmC6u7lBI
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ7gI9GTGjC-7cGjhd1tu4-zkUBAwoEDN9LHLG6CYJbFg7_etosYEy-epmkmaTJNOzPt980APAQi4AmqhMYqM5QzFVCpRErjPIpCZUPgNPdE4WEyGqXTaTZuwOOOC4OIHnyGbTf0f_lmpTfuqayT2vjZevw9OBCcR2HN1vpmwgRZp--a_zm4VtLeqv7qmeJdRvfkf4udQuuHe0fGO69yBg1cNmHQleuKzOsS0cUnGlK6kqtWzkuP2aqIXMxXNtF_fSPOMRnioJ_Ep7u6WNT2J77tTQsm3efJU49u2yDQIgsqaljOMQ1RsljIUMUYa6ETw00suUqQWWmUDKWNzIRVYGhsFCMjFeQ8l5lm7Bz2l6slXgDJAi0kKp2zNOIyS5W9JY1M7KkNI40svoSms8PsvS50Mdua4Orv6Xs46k1ehrNhfzS4hmNn9hrldgP7VbnBWzjUH1WxLu_8Pn0BjJ2XWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IECON+2017+-+43rd+Annual+Conference+of+the+IEEE+Industrial+Electronics+Society&rft.atitle=Fast+generalized+reduced+gradient+algorithm+based+data+reconciliation+model&rft.au=Song%2C+Xiaohan&rft.au=Zhao%2C+Jun&rft.au=Wang%2C+Wei&rft.date=2017-10-01&rft.pub=IEEE&rft.spage=8791&rft.epage=8795&rft_id=info:doi/10.1109%2FIECON.2017.8217545&rft.externalDocID=8217545