Optimal balancing control of bipedal robots using reinforcement learning
The balance control a bipedal robot in the presence of external disturbances is still a challenge. In this paper, a novel optimal ankle stiffness regulation for humanoid robot balancing problem is proposed. The presented techniques are developed based on the integral reinforcement learning (IRL) alg...
Gespeichert in:
| Veröffentlicht in: | 2016 12th World Congress on Intelligent Control and Automation (WCICA) S. 2186 - 2191 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.06.2016
|
| Schlagworte: | |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The balance control a bipedal robot in the presence of external disturbances is still a challenge. In this paper, a novel optimal ankle stiffness regulation for humanoid robot balancing problem is proposed. The presented techniques are developed based on the integral reinforcement learning (IRL) algorithm, which is designed for unknown continuous-time systems using only partial knowledge of the system dynamics. A linear mathematical model of an inverted pendulum model (IPM) is employed to study robot balance, and optimization is achieved by using linear quadratic regulator (LQR). Because the internal system dynamics is nonlinear and time-varying, IRL algorithm is proposed to solve the algebraic Riccati equation online without knowledge of the internal system dynamics. Nonlinear stiffness stabilizer based on both IRL and the fixed stiffness are studied in the simulation, the comparative results demonstrate the superior balance ability of the proposed method. In addition, dynamics changing is also discussed in the simulation to test robustness of the proposed method. |
|---|---|
| AbstractList | The balance control a bipedal robot in the presence of external disturbances is still a challenge. In this paper, a novel optimal ankle stiffness regulation for humanoid robot balancing problem is proposed. The presented techniques are developed based on the integral reinforcement learning (IRL) algorithm, which is designed for unknown continuous-time systems using only partial knowledge of the system dynamics. A linear mathematical model of an inverted pendulum model (IPM) is employed to study robot balance, and optimization is achieved by using linear quadratic regulator (LQR). Because the internal system dynamics is nonlinear and time-varying, IRL algorithm is proposed to solve the algebraic Riccati equation online without knowledge of the internal system dynamics. Nonlinear stiffness stabilizer based on both IRL and the fixed stiffness are studied in the simulation, the comparative results demonstrate the superior balance ability of the proposed method. In addition, dynamics changing is also discussed in the simulation to test robustness of the proposed method. |
| Author | Zhijun Li Lijia Ding Fang Peng Chun-Yi Su Chenguang Yang |
| Author_xml | – sequence: 1 surname: Fang Peng fullname: Fang Peng organization: Sch. of Autom. Sci. & Eng., South China Univ. of Technol., Guangzhou, China – sequence: 2 surname: Lijia Ding fullname: Lijia Ding organization: Sch. of Autom. Sci. & Eng., South China Univ. of Technol., Guangzhou, China – sequence: 3 surname: Zhijun Li fullname: Zhijun Li email: zjli@ieee.org organization: Sch. of Autom. Sci. & Eng., South China Univ. of Technol., Guangzhou, China – sequence: 4 surname: Chenguang Yang fullname: Chenguang Yang email: cyang@ieee.org organization: Sch. of Autom. Sci. & Eng., South China Univ. of Technol., Guangzhou, China – sequence: 5 surname: Chun-Yi Su fullname: Chun-Yi Su organization: Sch. of Autom. Sci. & Eng., South China Univ. of Technol., Guangzhou, China |
| BookMark | eNotj8tKBDEURCPowhn9Ad3kB7rNTcxrKY06wsAsFFwOedxIoCdp0u3Cv7fFWRXUgeLUhlyWWpCQO2A9ALMPn8Pb8NRzBqrXUptHJS7IBiSzjAtp5DXZHaYln9xIvRtdCbl80VDL0upIa6I-TxhX2Kqvy0y_5z_eMJdUW8ATloWO6FpZ6xtyldw44-05t-T95flj2HX7w-vqsO-yZUsXORdglA46xMhj8iH5GCAGrRlHZUEYZZnzLIJi0hgHDhMKZYP23IPYkvv_1YyIx6mt6u3neL4mfgE9P0n4 |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/WCICA.2016.7578463 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1509023585 9781467384148 9781509023585 1467384143 |
| EndPage | 2191 |
| ExternalDocumentID | 7578463 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i90t-d2231867c7cdd2dfbcfbdc1dc7702e69138690ab0d160588a1aefe369c7b2b13 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:37:48 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-d2231867c7cdd2dfbcfbdc1dc7702e69138690ab0d160588a1aefe369c7b2b13 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_7578463 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-June |
| PublicationDateYYYYMMDD | 2016-06-01 |
| PublicationDate_xml | – month: 06 year: 2016 text: 2016-June |
| PublicationDecade | 2010 |
| PublicationTitle | 2016 12th World Congress on Intelligent Control and Automation (WCICA) |
| PublicationTitleAbbrev | WCICA |
| PublicationYear | 2016 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.6096089 |
| Snippet | The balance control a bipedal robot in the presence of external disturbances is still a challenge. In this paper, a novel optimal ankle stiffness regulation... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 2186 |
| SubjectTerms | Cost function Impedance Mathematical model Riccati equations Robot kinematics Torque |
| Title | Optimal balancing control of bipedal robots using reinforcement learning |
| URI | https://ieeexplore.ieee.org/document/7578463 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB3a4sGTSitqVXLw6Lb71U1ylGKpILWgaG8lH5NS0G7Zbv397qRrRfDiLWQCIQlhmJn35gHcEFhNUFVXaCmDVLk0UNKoAK1wRPw0sVdreH3kk4mYzeS0Abd7LgwievAZ9mjoa_k2N1tKlfWp93qaJU1ocp7tuFrfPJhQ9t-GD8M7AmtlvXrhL8UU7zBGR__b6hg6P8w7Nt37lBNo4KoN46fqX3-od6YJh2gqA6sR5ix3TC_XaCtjkeu83DACsi9Ygb4jqvHJP1ZLQyw68Dy6fxmOg1oBIVjKsAxs5bup4ZzhxtrYOm2ctiayhvMwxkxGCelJKR3aiKqbQkUKHSaZNFzHOkpOobXKV3gGLK3CLGsGA41VSKSiKkZIXSzQZdom2gk8hzbdwXy9a3Exr49_8fd0Fw7pmneIqUtolcUWr-DAfJbLTXHt3-UL5UKSoQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5qFfSk0opvc_Dotvvq7uYoxdJirQWL9lbymJQF7Zbt1t9vZrtWBC_eQiYQkhCGmfm--QBuCayWUFU3kZw7oTChI7gSDurEEPFT-aVaw-swHo2S6ZSPa3C35cIgYgk-wxYNy1q-ztSaUmVt6r0eRsEO7JJyVsXW-mbCuLz91h107wmuFbWqpb80U0qX0Tv832ZH0Pzh3rHx1qscQw0XDeg_25_9Id6ZJCSisgZWYcxZZphMl6itMc9kVqwYQdnnLMeyJ6oq03-sEoeYN-Gl9zDp9p1KA8FJuVs42npvajmnYqW1r41URmrlaRXHro8R9wJSlBLS1R7VNxPhCTQYRFzF0pdecAL1RbbAU2ChDbS06nQk2qBIeDZKCI2foImkDqRJ8AwadAez5abJxaw6_vnf0zew3588DWfDwejxAg7oyjf4qUuoF_kar2BPfRbpKr8u3-gLtl-V6g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+12th+World+Congress+on+Intelligent+Control+and+Automation+%28WCICA%29&rft.atitle=Optimal+balancing+control+of+bipedal+robots+using+reinforcement+learning&rft.au=Fang+Peng&rft.au=Lijia+Ding&rft.au=Zhijun+Li&rft.au=Chenguang+Yang&rft.date=2016-06-01&rft.pub=IEEE&rft.spage=2186&rft.epage=2191&rft_id=info:doi/10.1109%2FWCICA.2016.7578463&rft.externalDocID=7578463 |