An image registration approach to study the convergence of particle swarm optimization algorithm with non-linear inertia weight variation
Particle swarm optimization (PSO) algorithm is a swarm based metaheuristic method to solve multimodal optimization problems. The inertia weight parameter in the algorithm is very important as it balances the exploration and exploitation of the algorithm. Many variations of the parameter have been re...
Saved in:
| Published in: | 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT) pp. 1 - 5 |
|---|---|
| Main Authors: | , |
| Format: | Conference Proceeding |
| Language: | English |
| Published: |
IEEE
01.07.2017
|
| Subjects: | |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Particle swarm optimization (PSO) algorithm is a swarm based metaheuristic method to solve multimodal optimization problems. The inertia weight parameter in the algorithm is very important as it balances the exploration and exploitation of the algorithm. Many variations of the parameter have been reported in the literature where a linearly decreasing inertia weight was found to be the best choice for most of the problems. In this work we have used several non-linear variations in the inertia weight (not used earlier) and developed the algorithm for the image registration problem of two mutually translated images. For each run of the algorithm, the increments of fitness function and hence the convergence of PSO is carefully monitored and compared with standard parameters. |
|---|---|
| AbstractList | Particle swarm optimization (PSO) algorithm is a swarm based metaheuristic method to solve multimodal optimization problems. The inertia weight parameter in the algorithm is very important as it balances the exploration and exploitation of the algorithm. Many variations of the parameter have been reported in the literature where a linearly decreasing inertia weight was found to be the best choice for most of the problems. In this work we have used several non-linear variations in the inertia weight (not used earlier) and developed the algorithm for the image registration problem of two mutually translated images. For each run of the algorithm, the increments of fitness function and hence the convergence of PSO is carefully monitored and compared with standard parameters. |
| Author | Saxena, Sanjeev Pohit, M. |
| Author_xml | – sequence: 1 givenname: Sanjeev surname: Saxena fullname: Saxena, Sanjeev email: ssaxena@amity.edu organization: Dept. of Electron. & Commun. Eng., Amity Univ., Noida, India – sequence: 2 givenname: M. surname: Pohit fullname: Pohit, M. email: mausumi@gbu.ac.in organization: Dept. of Appl. Phys., Gautam Buddha Univ., Noida, India |
| BookMark | eNotkM1OwzAQhI0EBwo8QS_7Ailru_nxsYr4qVTBpfdq42wSS0kcuaZVeQPemgh6mTnNp5lZiNvRjyzEUuJKSjTP27IsP_YrhTJfFQrXmKc3YiFTNKhRF_m9-NmM4AZqGQK37hgDRedHoGkKnmwH0cMxftUXiB2D9eOJQ8ujZfANTBSisz3D8UxhAD9FN7jvK6BvfXCxG-A8K8y9kt6NTAFmnWMEZ3ZtF-FEwf1FHsVdQ_2Rn67-IPavL_vyPdl9vm3LzS5xBmNSS8rWMm3QrjOUuqiwKBAV1ZSl2lqT5TZvkCpptLImryqj0GpSXCutJBn9IJb_WMfMhynM48PlcD1H_wI2oGJS |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICCCNT.2017.8204075 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 1509030387 9781509030385 |
| EndPage | 5 |
| ExternalDocumentID | 8204075 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IL CBEJK RIE RIL |
| ID | FETCH-LOGICAL-i90t-d1a6415f0c460138b088002ada653cc967c7f0ab1932c97bb920c3a2ed2321a93 |
| IEDL.DBID | RIE |
| IngestDate | Thu Jun 29 18:37:37 EDT 2023 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-d1a6415f0c460138b088002ada653cc967c7f0ab1932c97bb920c3a2ed2321a93 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_8204075 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-July |
| PublicationDateYYYYMMDD | 2017-07-01 |
| PublicationDate_xml | – month: 07 year: 2017 text: 2017-July |
| PublicationDecade | 2010 |
| PublicationTitle | 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT) |
| PublicationTitleAbbrev | ICCCNT |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| Score | 1.647615 |
| Snippet | Particle swarm optimization (PSO) algorithm is a swarm based metaheuristic method to solve multimodal optimization problems. The inertia weight parameter in... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 1 |
| SubjectTerms | Convergence Correlation Fitness Function Image registration Inertia Weight Monitoring Optimization Particle swarm optimization |
| Title | An image registration approach to study the convergence of particle swarm optimization algorithm with non-linear inertia weight variation |
| URI | https://ieeexplore.ieee.org/document/8204075 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwELYAdejUVlD1rRs61uC8bDxWUVG7IAYGNuT40UZqEhQC_Ib-69omUFXq0i2JElmy47vvzvd9h9DjWMUiEAnBxGQCx0qHmMfG4MToyBCmEqpj32yCTafjxYLPOujpyIXRWvviMz10l_4sX1Vy41JlI-utbPyRdFGXMbrnarVCQgHho7c0TadzV63Fhu2bv1qmeI8xOfvfWOdo8EO9g9nRqVygji776Ou5hLywOx9cH4WD0i0c9MChqcDLxIJFc-DryD2lUkNlYNX-G7DeibqAypqIouVegvh8r-q8-SjApWOhrErsUKeowVEC7d6Hnc-cwtZG1P6TAZpPXubpK257KOCckwarQFDrog2RMXVnkpk1KtYGCiVoEknJKZPMEJE5GCc5yzIeEhmJUCuLtALBo0vUs4PrKwSG0CwQoXGgMbZBxljYe0N4mIlEExVdo76bxeVqr5KxbCfw5u_Ht-jULdS-8PUO9Zp6o-_Ridw2-bp-8Ev7DZYKqzc |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKQYIJUIt4cwMjaZ13PaKIqhUl6pChW-X4AZFIUqVp-xv419huWoTEwhZHsSyd43v5vu8Qehxwj9rUxxaWKbU8LhyLeFJavhSuxCH3A-GZZhNhHA9mMzJtoac9FkYIYYrPRE8_mrt8XrKVTpX1lbVS8Yd_gA515yx_i9ZqqIRsTPrjKIriRNdrhb3m219NU4zNGJ7-b7Uz1P0B38F0b1bOUUsUHfT1XECWq7MPupPCjusWdozgUJdgiGJB-XNgKskNqFJAKWHR_B2w3NAqh1IpibxBXwL9fC-rrP7IQSdkoSgLS_udtAINClSnHzYmdwprFVObKV2UDF-SaGQ1XRSsjODa4jYNlKwkZl6gbyVTpVaUFqScBr7LGAlCFkpMU-3IMRKmKXEwc6kjuPK1bErcC9RWi4tLBBIHqU0dqd1GT4UZA6rGEhMnpb7A3L1CHS3F-WLLkzFvBHj99-sHdDxK3ibzyTh-vUEnetO2ZbC3qF1XK3GHjti6zpbVvdnmb6yDroI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+8th+International+Conference+on+Computing%2C+Communication+and+Networking+Technologies+%28ICCCNT%29&rft.atitle=An+image+registration+approach+to+study+the+convergence+of+particle+swarm+optimization+algorithm+with+non-linear+inertia+weight+variation&rft.au=Saxena%2C+Sanjeev&rft.au=Pohit%2C+M.&rft.date=2017-07-01&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICCCNT.2017.8204075&rft.externalDocID=8204075 |