A global optimization method for multiple peak photovoltaic MPPT

Under partial shading condition or imbalanced temperature distribution, the power-voltage characteristic curve of photovoltaic (PV) array exhibits complicated multiple peaks. Traditional maximum power point tracking (MPPT) method is usually easy to trap into local extreme power point. To solve this...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society s. 554 - 559
Hlavní autoři: Yuling Li, Dianjun Ju, Yimeng Wang, Jian-er Wu, Zhidong Dong
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.10.2017
Témata:
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Under partial shading condition or imbalanced temperature distribution, the power-voltage characteristic curve of photovoltaic (PV) array exhibits complicated multiple peaks. Traditional maximum power point tracking (MPPT) method is usually easy to trap into local extreme power point. To solve this issue, this paper proposes a novel MPPT method using quantum-behaved particle swarm optimization (QPSO) algorithm. This algorithm adopts detect-search strategy based on voltage closed-loop control, making voltage particles search photovoltaic characteristic curves in quantum-behaved paths. By setting a modulation strategy of reunion and separation factor and stopping criterion, the proposed QPSO algorithm improves the precision of stable state, and eliminates power oscillation under stability condition. Experimental results show that QPSO algorithm has good performance with less parameters, superior global optimization ability, favorable stability and better adaptability compared with traditional particle swarm optimization (PSO) algorithm in PV MPPT.
DOI:10.1109/IECON.2017.8216097