Low-Complexity DOA Estimation via OMP and Majorization-Minimization

Traditional sparse representation algorithms for direction-of-arrival (DOA) estimation always discrete successive azimuths domain and assume the DOAs lie in prior discretized spatial grid. However, discretization incurs errors and leads to poor performance in practice owning to that there always exi...

Full description

Saved in:
Bibliographic Details
Published in:2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP) pp. 18 - 19
Main Authors: Zhang, Xiaowei, Li, Yingsong, Yuan, Yuqi, Jiang, Tao
Format: Conference Proceeding
Language:English
Published: IEEE 01.08.2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Traditional sparse representation algorithms for direction-of-arrival (DOA) estimation always discrete successive azimuths domain and assume the DOAs lie in prior discretized spatial grid. However, discretization incurs errors and leads to poor performance in practice owning to that there always exist mismatches between the discrete azimuths and the true continuous DOAs. Several efforts have been worked to resolve grid mismatches issue, but these techniques involve serious computational burden. In this paper, a low-complexity DOA estimation method is proposed, which firstly efficiently shrinks dimension of dictionary utilizing Orthogonal Matching Pursuit (OMP), then a iterative refine algorithm is developed by Majorization-Minimization (MM) method. Numerical results show that the proposed algorithm achieves superior performance for handing DOA estimation with low-complexity as well as high accuracy.
AbstractList Traditional sparse representation algorithms for direction-of-arrival (DOA) estimation always discrete successive azimuths domain and assume the DOAs lie in prior discretized spatial grid. However, discretization incurs errors and leads to poor performance in practice owning to that there always exist mismatches between the discrete azimuths and the true continuous DOAs. Several efforts have been worked to resolve grid mismatches issue, but these techniques involve serious computational burden. In this paper, a low-complexity DOA estimation method is proposed, which firstly efficiently shrinks dimension of dictionary utilizing Orthogonal Matching Pursuit (OMP), then a iterative refine algorithm is developed by Majorization-Minimization (MM) method. Numerical results show that the proposed algorithm achieves superior performance for handing DOA estimation with low-complexity as well as high accuracy.
Author Yuan, Yuqi
Jiang, Tao
Li, Yingsong
Zhang, Xiaowei
Author_xml – sequence: 1
  givenname: Xiaowei
  surname: Zhang
  fullname: Zhang, Xiaowei
  organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
– sequence: 2
  givenname: Yingsong
  surname: Li
  fullname: Li, Yingsong
  organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
– sequence: 3
  givenname: Yuqi
  surname: Yuan
  fullname: Yuan, Yuqi
  organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
– sequence: 4
  givenname: Tao
  surname: Jiang
  fullname: Jiang, Tao
  organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
– sequence: 5
  givenname: Yuqi
  surname: Yuan
  fullname: Yuan, Yuqi
  organization: College of Automation, Harbin Engineering University, Harbin, China
BookMark eNotj9FKwzAYhSPohc69gN7kBVKTJU3-Xpa4qdDSXux-pEkKkTUZXVHn01tmrw4fHxzOeUC3MUWP0BOjGWO0eClbXbbZhjLIIOfAJNygdaGAzSBzKQDuka7SN9FpOB39T5gu-LUp8fY8hcFMIUX8FQxu6hab6HBtPtMYfq-C1CGGYYFHdNeb49mvl1yh_W671--kat4-dFmRUNCJWNtbRW3unJKGUa6kE7xTUAjhOqWAG28Fd730eWfFprey4-Bm77jl0lO-Qs__tcF7fziN88bxclie8T_VaUga
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/APCAP.2018.8538168
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781538656488
1538656485
EndPage 19
ExternalDocumentID 8538168
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-ccfc70c5dd76a10376d43b78944db7783aec43df6e5bc42fc6b38d789d3c36e03
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:57 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-ccfc70c5dd76a10376d43b78944db7783aec43df6e5bc42fc6b38d789d3c36e03
PageCount 2
ParticipantIDs ieee_primary_8538168
PublicationCentury 2000
PublicationDate 2018-Aug.
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-Aug.
PublicationDecade 2010
PublicationTitle 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP)
PublicationTitleAbbrev APCAP
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6911557
Snippet Traditional sparse representation algorithms for direction-of-arrival (DOA) estimation always discrete successive azimuths domain and assume the DOAs lie in...
SourceID ieee
SourceType Publisher
StartPage 18
SubjectTerms Array signal processing
Azimuth
Direction-of-arrival estimation
DOA estimation
Estimation
Iterative methods
Majorization-Minimization (MM)
Matching pursuit algorithms
Orthogonal Matching Pursuit (OMP)
Signal processing algorithms
sparse representation
Title Low-Complexity DOA Estimation via OMP and Majorization-Minimization
URI https://ieeexplore.ieee.org/document/8538168
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELbaioEJUIt4ywMjblOcxPZYVa0YmpKhQ7fqfHakIJGgkhbx77GTUITEwuaXbJ3t0-fHfXeE3EeGOxRRwMYGBQulkgzcTmJa2QAkyijC2rv-QiyXcr1WaYc8HLgw1tra-MwOfbL-yzcl7vxT2chBiw8T0SVdIeKGq_XNgwnUaJJOJ6k31pLDtuGviCk1YMxP_jfUKRn8MO9oesCUM9KxRZ9MF-UH84rrnVdWn9Td5-jMqWbDOqT7HOhzklIoDE3gpdy21EqW5EX-2mYGZDWfraZPrA1-wHIVVAwxQxFgZIyIwXP5YhNyLaQKQ6OFkBwshtxksY00ho8ZxppL4-oNRx7bgJ-TXlEW9oJQjQCZ64Jrk4WBBj2OJAC4gwxyYcdwSfpe_s1b495i04p-9XfxNTn2U9zYwN2QXrXd2VtyhPsqf9_e1WvyBXiukJ0
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKQYIJUIt444ERt2ntxM5YVa2KSEqGDt2q8yNSkEhQSYv499hJKEJiYfNLts726fPjvjuE7n1NLYqEQAZaccJEKAjYnURkaDwQSvi-qrzrR3w-F8tlmLTQw44LY4ypjM9MzyWrv3xdqI17KutbaHFhIvbQvs_Y0KvZWt9MGC_sj5LxKHHmWqLXNP0VM6WCjOnx_wY7Qd0f7h1Odqhyilom76BxVHwQp7rOfWX5ie2NDk-scta8Q7zNAD_HCYZc4xheinVDriRxlmevTaaLFtPJYjwjTfgDkoVeSZRKFfeUrzUPwLH5As2o5CJkTEvOBQWjGNVpYHyp2DBVgaRC23pNFQ2MR89QOy9yc46wVACp7YJKnTJPghz4AgDsUUZRbgZwgTpO_tVb7eBi1Yh--XfxHTqcLeJoFT3On67QkZvu2iLuGrXL9cbcoAO1LbP39W21Pl8spJPk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+Asia-Pacific+Conference+on+Antennas+and+Propagation+%28APCAP%29&rft.atitle=Low-Complexity+DOA+Estimation+via+OMP+and+Majorization-Minimization&rft.au=Zhang%2C+Xiaowei&rft.au=Li%2C+Yingsong&rft.au=Yuan%2C+Yuqi&rft.au=Jiang%2C+Tao&rft.date=2018-08-01&rft.pub=IEEE&rft.spage=18&rft.epage=19&rft_id=info:doi/10.1109%2FAPCAP.2018.8538168&rft.externalDocID=8538168