Application of Blind Sources Separation in plant leaves classification
This paper discussed the application of Blind Sources Separation (BSS) in plant leaves classification. Firstly, collection of two different types of plant leaves was performed using the Nexus-870 Fourier transform infrared spectroscopy, and wavelet analysis was adopted to compress the immense sample...
Gespeichert in:
| Veröffentlicht in: | 2012 10th World Congress on Intelligent Control and Automation (WCICA S. 4174 - 4179 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.07.2012
|
| Schlagworte: | |
| ISBN: | 9781467313971, 1467313971 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | This paper discussed the application of Blind Sources Separation (BSS) in plant leaves classification. Firstly, collection of two different types of plant leaves was performed using the Nexus-870 Fourier transform infrared spectroscopy, and wavelet analysis was adopted to compress the immense sample data, thus accelerating the data processing speed. Then the BSS algorithm FastICA algorithm was used on the compressed spectral data to increase the difference between the different signals. Finally, BP neural network algorithm was used to achieve the classification of plant species. Experiments showed that processing data in near-infrared spectroscopy through BSS can not only improve the speed and accuracy of BP neural network, but also enhance its classification correctness, and the classification results with the proposed method was satisfactory. |
|---|---|
| ISBN: | 9781467313971 1467313971 |
| DOI: | 10.1109/WCICA.2012.6359177 |

