Application of Blind Sources Separation in plant leaves classification

This paper discussed the application of Blind Sources Separation (BSS) in plant leaves classification. Firstly, collection of two different types of plant leaves was performed using the Nexus-870 Fourier transform infrared spectroscopy, and wavelet analysis was adopted to compress the immense sample...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2012 10th World Congress on Intelligent Control and Automation (WCICA s. 4174 - 4179
Hlavní autori: Wu Ying, Guo Tian-tai, Jiang Jie-wei
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.07.2012
Predmet:
ISBN:9781467313971, 1467313971
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper discussed the application of Blind Sources Separation (BSS) in plant leaves classification. Firstly, collection of two different types of plant leaves was performed using the Nexus-870 Fourier transform infrared spectroscopy, and wavelet analysis was adopted to compress the immense sample data, thus accelerating the data processing speed. Then the BSS algorithm FastICA algorithm was used on the compressed spectral data to increase the difference between the different signals. Finally, BP neural network algorithm was used to achieve the classification of plant species. Experiments showed that processing data in near-infrared spectroscopy through BSS can not only improve the speed and accuracy of BP neural network, but also enhance its classification correctness, and the classification results with the proposed method was satisfactory.
AbstractList This paper discussed the application of Blind Sources Separation (BSS) in plant leaves classification. Firstly, collection of two different types of plant leaves was performed using the Nexus-870 Fourier transform infrared spectroscopy, and wavelet analysis was adopted to compress the immense sample data, thus accelerating the data processing speed. Then the BSS algorithm FastICA algorithm was used on the compressed spectral data to increase the difference between the different signals. Finally, BP neural network algorithm was used to achieve the classification of plant species. Experiments showed that processing data in near-infrared spectroscopy through BSS can not only improve the speed and accuracy of BP neural network, but also enhance its classification correctness, and the classification results with the proposed method was satisfactory.
Author Wu Ying
Guo Tian-tai
Jiang Jie-wei
Author_xml – sequence: 1
  surname: Wu Ying
  fullname: Wu Ying
  organization: China Jiliang Univ., Hangzhou, China
– sequence: 2
  surname: Guo Tian-tai
  fullname: Guo Tian-tai
  email: guotiantai@cjlu.edu.cn
  organization: China Jiliang Univ., Hangzhou, China
– sequence: 3
  surname: Jiang Jie-wei
  fullname: Jiang Jie-wei
  organization: China Jiliang Univ., Hangzhou, China
BookMark eNo1j91KxDAQRiMq6K59Ab3JC2zNJE3TXK7FVWHBi13wcsnPBCKxLU0VfHsLW-dmGA7fcL4Vuer6Dgm5B1YCMP340b6125Iz4GUtpAalLsgKqloJELoWl6TQqvm_FdyQIudPNk8DTcXZLdlthyFFZ6bYd7QP9CnFztND_z06zPSAgxnPLHZ0SKabaELzMyOXTM4xLNE7ch1Mylgse02Ou-dj-7rZv7_MhvtN1GzaOAPOcSvRetA6MBkkIHBbexVmT2MFBusq6asaZ2erJXOuYcxzX0kWUKzJw_ltRMTTMMYvM_6elubiDx0nT38
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WCICA.2012.6359177
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1467313963
9781467313988
9781467313964
146731398X
EndPage 4179
ExternalDocumentID 6359177
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-ca1cc2b5ebd199f05f51e12b6d7f978ab3efbc45d46e467b950cc800d2d450fe3
IEDL.DBID RIE
ISBN 9781467313971
1467313971
IngestDate Wed Aug 27 03:28:34 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-ca1cc2b5ebd199f05f51e12b6d7f978ab3efbc45d46e467b950cc800d2d450fe3
PageCount 6
ParticipantIDs ieee_primary_6359177
PublicationCentury 2000
PublicationDate 2012-July
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-July
PublicationDecade 2010
PublicationTitle 2012 10th World Congress on Intelligent Control and Automation (WCICA
PublicationTitleAbbrev WCICA
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000818420
Score 1.5019057
Snippet This paper discussed the application of Blind Sources Separation (BSS) in plant leaves classification. Firstly, collection of two different types of plant...
SourceID ieee
SourceType Publisher
StartPage 4174
SubjectTerms Accuracy
Algorithm design and analysis
Blind sources separation (BSS)
BP neural network
Classification algorithms
near infrared (NIR) spectroscopy
Neural networks
Plant leaves
Spectroscopy
Training
wavelet analysis
Wavelet transforms
Title Application of Blind Sources Separation in plant leaves classification
URI https://ieeexplore.ieee.org/document/6359177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NawIxEA0qPfTUFi39Joceu5rNbhJztFJpoYigUG-ymUxAkFX8-v1Nsmop9NJbkoGQvGWZyWTeCyHPAi1Y638ko1yg5KBKDMoiUSIFsDI1DKLO7KcaDrvTqR7VyMuJC4OIsfgM26EZ7_LtEnYhVdbxztGfLlSd1JWSFVfrlE8J0mw5Z5G7JVUWApv0KOl07B9JM0x3vvof_V6o7OLtw6y_nleJ3mVw8b91XZLWD02Pjk4O6IrUsGySQe_nSpouHX31caSl45ij39AxVlrf3jYv6WrhcaULLPbeBCGODoVD0dwik8HbpP-eHB5LSOaabRMoPLbcCDQ21dox4USKKTfSKucxKEyGzkAubC7R42G0YAA-WLTc5oI5zK5Jo1yWeEMoM1ah7nLghcgNYNeB9KdMC5lJTc7tLWkGCGarSg5jdtj93d_D9-Q8oFxVuD6Qxna9w0dyBvvtfLN-it_wG1DDm5I
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB6sLbSntmjpuzn02NVsdrNxj1YqSq0ICvUmm2QCgqzi6_c3yfqg0Etv2Qwsmy8sM5nM9w3AK0ettLY_khTGUXJQBBKTLBA8VEonoaTK68z2RL_fGI_TQQneDlwYRPTFZ1hzQ3-Xr-dq41Jldesc7elCnMApj2NGC7bWIaPixNnsrGdvJSJyoU24F3XaP-9pMzStf7e6raar7WK13Xt_NVjx_qV9-b8vu4LqkahHBgcXdA0lzCvQbh4vpcnckHcbSWoy9Fn6FRliofZtbdOcLGYWWTLDbGtNykXSrnTIm6swan-MWp1g1y4hmKZ0HajMosskR6nDNDWUGx5iyGSihbEYZDJCI1XMdZygxUOmnCplw0XNdMypwegGyvk8x1sgVGqBaYMplvFYKmwYldhzplaRDGXM9B1UHASTRSGIMdmt_v7v6Rc474y-epNet__5ABcO8aLe9RHK6-UGn-BMbdfT1fLZ7-cPnBGe2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+10th+World+Congress+on+Intelligent+Control+and+Automation+%28WCICA&rft.atitle=Application+of+Blind+Sources+Separation+in+plant+leaves+classification&rft.au=Wu+Ying&rft.au=Guo+Tian-tai&rft.au=Jiang+Jie-wei&rft.date=2012-07-01&rft.pub=IEEE&rft.isbn=9781467313971&rft.spage=4174&rft.epage=4179&rft_id=info:doi/10.1109%2FWCICA.2012.6359177&rft.externalDocID=6359177
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467313971/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467313971/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467313971/sc.gif&client=summon&freeimage=true