Group-based truncated l1-2 model for image inpainting
We propose a novel image inpainting model that can effectively estimate missing pixels in an observed image. The latent image is characterized by a group-based low-rank prior, which assumes that a group of vectorized similar image patches can be well approximated by a low-rank matrix. We enforce the...
Uloženo v:
| Vydáno v: | 2017 IEEE International Conference on Image Processing (ICIP) s. 2079 - 2083 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.09.2017
|
| Témata: | |
| ISSN: | 2381-8549 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We propose a novel image inpainting model that can effectively estimate missing pixels in an observed image. The latent image is characterized by a group-based low-rank prior, which assumes that a group of vectorized similar image patches can be well approximated by a low-rank matrix. We enforce the low-rankness of each group by penalizing a truncated difference of the l 1 and the l 2 norms of its singular values, which achieves a close approximation to the matrix rank. We apply a difference of convex algorithm (DCA) to solve the proposed model efficiently. Our method is validated on filling missing blocks and randomly missing pixels, with superior performance over the state-of-the-art. |
|---|---|
| ISSN: | 2381-8549 |
| DOI: | 10.1109/ICIP.2017.8296648 |