Support Vector Machine for Classification Based on Fuzzy Training Data

Support vector machines (SVMs) have been very successful in pattern recognition and function estimation problems, but in the support vector machines for classification, the training examples are non-fuzzy input and output is y=plusmn1;. In this paper, we introduce the support vector machine in which...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings (International Conference on Machine Learning and Cybernetics.) s. 1609 - 1614
Hlavní autoři: Ai-Bing Ji, Jia-Hong Pang, Shu-Huan Li, Jian-Ping Sun
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.08.2006
Témata:
ISBN:1424400619, 9781424400614
ISSN:2160-133X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Support vector machines (SVMs) have been very successful in pattern recognition and function estimation problems, but in the support vector machines for classification, the training examples are non-fuzzy input and output is y=plusmn1;. In this paper, we introduce the support vector machine in which the training examples are fuzzy input, and give some solving procedure of the support vector machine with fuzzy training data
ISBN:1424400619
9781424400614
ISSN:2160-133X
DOI:10.1109/ICMLC.2006.258838