Support Vector Machine for Classification Based on Fuzzy Training Data
Support vector machines (SVMs) have been very successful in pattern recognition and function estimation problems, but in the support vector machines for classification, the training examples are non-fuzzy input and output is y=plusmn1;. In this paper, we introduce the support vector machine in which...
Uloženo v:
| Vydáno v: | Proceedings (International Conference on Machine Learning and Cybernetics.) s. 1609 - 1614 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.08.2006
|
| Témata: | |
| ISBN: | 1424400619, 9781424400614 |
| ISSN: | 2160-133X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Support vector machines (SVMs) have been very successful in pattern recognition and function estimation problems, but in the support vector machines for classification, the training examples are non-fuzzy input and output is y=plusmn1;. In this paper, we introduce the support vector machine in which the training examples are fuzzy input, and give some solving procedure of the support vector machine with fuzzy training data |
|---|---|
| ISBN: | 1424400619 9781424400614 |
| ISSN: | 2160-133X |
| DOI: | 10.1109/ICMLC.2006.258838 |

