Support Vector Machine for Classification Based on Fuzzy Training Data

Support vector machines (SVMs) have been very successful in pattern recognition and function estimation problems, but in the support vector machines for classification, the training examples are non-fuzzy input and output is y=plusmn1;. In this paper, we introduce the support vector machine in which...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings (International Conference on Machine Learning and Cybernetics.) s. 1609 - 1614
Hlavní autori: Ai-Bing Ji, Jia-Hong Pang, Shu-Huan Li, Jian-Ping Sun
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.08.2006
Predmet:
ISBN:1424400619, 9781424400614
ISSN:2160-133X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Support vector machines (SVMs) have been very successful in pattern recognition and function estimation problems, but in the support vector machines for classification, the training examples are non-fuzzy input and output is y=plusmn1;. In this paper, we introduce the support vector machine in which the training examples are fuzzy input, and give some solving procedure of the support vector machine with fuzzy training data
ISBN:1424400619
9781424400614
ISSN:2160-133X
DOI:10.1109/ICMLC.2006.258838