New approach for systems monitoring based on semi-supervised classification

In this paper, we consider the problem of fault diagnosis for systems with many possible functioning modes. A new methodology has been proposed combining both supervised and unsupervised learning methods. Since supervised learning requires necessarily a broad labelled base that may not always availa...

Full description

Saved in:
Bibliographic Details
Published in:2011 International Conference on Communications, Computing and Control Applications pp. 1 - 6
Main Authors: Theljani, F., Laabidi, K., Lahmari-Ksouri, M., Zidi, S.
Format: Conference Proceeding
Language:English
Published: IEEE 01.03.2011
Subjects:
ISBN:9781424497959, 1424497957
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we consider the problem of fault diagnosis for systems with many possible functioning modes. A new methodology has been proposed combining both supervised and unsupervised learning methods. Since supervised learning requires necessarily a broad labelled base that may not always available in a sufficient cardinality, we aim at first an unsupervised grouping of a critical faults set (classes) though a Self-Adaptive Clustering Algorithm (SACA). Within this framework, the presented algorithm is based on the evaluation of a metric distance between cluster centroids and samples. An integrated process for optimization allows the tuning of confidence threshold for decision. Next, an additional supervised classification step using Artificial Neural Network (ANN) provides practical information for decision-making. The network is trained according to the classification multi-levels dedicated for multi-class problems. The developed approach is assessed on a hydraulic system consisting of three connected tanks.
AbstractList In this paper, we consider the problem of fault diagnosis for systems with many possible functioning modes. A new methodology has been proposed combining both supervised and unsupervised learning methods. Since supervised learning requires necessarily a broad labelled base that may not always available in a sufficient cardinality, we aim at first an unsupervised grouping of a critical faults set (classes) though a Self-Adaptive Clustering Algorithm (SACA). Within this framework, the presented algorithm is based on the evaluation of a metric distance between cluster centroids and samples. An integrated process for optimization allows the tuning of confidence threshold for decision. Next, an additional supervised classification step using Artificial Neural Network (ANN) provides practical information for decision-making. The network is trained according to the classification multi-levels dedicated for multi-class problems. The developed approach is assessed on a hydraulic system consisting of three connected tanks.
Author Zidi, S.
Theljani, F.
Laabidi, K.
Lahmari-Ksouri, M.
Author_xml – sequence: 1
  givenname: F.
  surname: Theljani
  fullname: Theljani, F.
  email: foued_theljani@yahoo.fr
  organization: Lab. of Res. Anal. & Control of Syst, Nat. Eng. Sch. of Tunis, Tunis, Tunisia
– sequence: 2
  givenname: K.
  surname: Laabidi
  fullname: Laabidi, K.
  email: labidi_kaouther@yahoo.fr
  organization: Lab. of Res. Anal. & Control of Syst, Nat. Eng. Sch. of Tunis, Tunis, Tunisia
– sequence: 3
  givenname: M.
  surname: Lahmari-Ksouri
  fullname: Lahmari-Ksouri, M.
  email: moufida_ksouri@yahoo.fr
  organization: Lab. of Res. Anal. & Control of Syst, Nat. Eng. Sch. of Tunis, Tunis, Tunisia
– sequence: 4
  givenname: S.
  surname: Zidi
  fullname: Zidi, S.
  email: Salah_zidi@yahoo.fr
  organization: LAGIS, Univ. des Sci. et Technol. de Lille, Villeneuve d'Ascq, France
BookMark eNo1j01OwzAYRI0ACVpyAMTGF0jwF__EXlYRFEQFm-4r27HBqLEjO4B6e0CU2YzeLJ40C3QWU3QIXQNpAIi67ft-1bQEoBGEQtuyE7QA1jKmOsXUKapUJ_-ZqwtUlfJOfiKEVLS7RE_P7gvracpJ2zfsU8blUGY3FjymGOaUQ3zFRhc34BRxcWOoy8fk8mf4nexelxJ8sHoOKV6hc6_3xVXHXqLt_d22f6g3L-vHfrWpgyJzbaVhnlMvwQpBZeuBG0FNp7mXnIGhoDxoDcwRPXTWKvDcKMPADVYSregS3fxpg3NuN-Uw6nzYHe_Tb8ODUQ8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CCCA.2011.6031224
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1424497949
9781424497966
1424497965
9781424497942
EndPage 6
ExternalDocumentID 6031224
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-c8b4f53f81c66382f15b63b7a5f8541b319f1aa14e0ad7cc91f5b9b41edc80a93
IEDL.DBID RIE
ISBN 9781424497959
1424497957
IngestDate Wed Aug 27 02:44:22 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-c8b4f53f81c66382f15b63b7a5f8541b319f1aa14e0ad7cc91f5b9b41edc80a93
PageCount 6
ParticipantIDs ieee_primary_6031224
PublicationCentury 2000
PublicationDate 2011-March
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-March
PublicationDecade 2010
PublicationTitle 2011 International Conference on Communications, Computing and Control Applications
PublicationTitleAbbrev CCCA
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000668937
Score 1.460003
Snippet In this paper, we consider the problem of fault diagnosis for systems with many possible functioning modes. A new methodology has been proposed combining both...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Classification
Computational modeling
Decision-Making
Fault Diagnosis
MLP Network
Monitoring
Optimization
SACA
Title New approach for systems monitoring based on semi-supervised classification
URI https://ieeexplore.ieee.org/document/6031224
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NawMhEB2S0ENPbUlKv_HQY7dZs7rqsSwNhZaQQyi5BcdVyCGbkE36-6vuJqXQS2_qQUQZ3_iceQPwiN6n1ZpjkitW-geKUQnmWiRog76ch3iMhNvnh5hM5Hyuph14OubCWGtj8Jl9Ds34l1-uzT5QZcNQEdlDThe6QuRNrtaRT_HQGaD3kLulhOLiIOnU9lX7q0lTNSyK4qUR8Gwn_VVdJYLL-Ox_yzqHwU-WHpke8ecCOrbqw7u_tchBKJx4j5Q0Ws01WUXrDTQeCdBVknVFartaJvV-Ey6MMGSCLx2Ch-J5DWA2fp0Vb0lbMCFZqnSXGInM8cxJarwfIUeOcswzFJo7yRlFb22Oak2ZTXUpjFHUcVTIqC2NTLXKLqFXrSt7BSRD1FmmEVVJmZYjZMr5p4-fWVtnlbuGftiHxaaRxFi0W3Dz9_AtnDZUbAjduoPebru393BivnbLevsQz_EbIm6cKA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEJ0gmuhJDRi_7cGjK1u2Zduj2UgwIOFADDfS6bYJBxfCgr_ftrtgTLx4a3tomjbTN32deQPwiM6nVYpj1JMsdw8ULSPsqTRC4_XlHMRjINw-Rul4LGYzOWnA0z4XxhgTgs_Ms2-Gv_x8qbeeKuv4isgOcg7gkDPWjatsrT2j4sDTg-8ue0umkqc7Uae6L-t_TRrLTpZlL5WEZz3tr_oqAV76p_9b2Bm0f_L0yGSPQOfQMEULhu7eIjupcOJ8UlKpNZfkM9ivJ_KIB6-cLAtSms9FVG5X_srwQ9p70z58KJxYG6b912k2iOqSCdFCxptIC2SWJ1ZQ7TwJ0bWUYy_BVHErOKPo7M1SpSgzscpTrSW1HCUyanItYiWTC2gWy8JcAkkQVZIoRJlTpkQXmbTu8eNmVsYaaa-g5fdhvqpEMeb1Flz_PfwAx4Pp-2g-ehsPb-CkImZ9INctNDfrrbmDI_21WZTr-3Cm33Rkn28
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+International+Conference+on+Communications%2C+Computing+and+Control+Applications&rft.atitle=New+approach+for+systems+monitoring+based+on+semi-supervised+classification&rft.au=Theljani%2C+F.&rft.au=Laabidi%2C+K.&rft.au=Lahmari-Ksouri%2C+M.&rft.au=Zidi%2C+S.&rft.date=2011-03-01&rft.pub=IEEE&rft.isbn=9781424497959&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FCCCA.2011.6031224&rft.externalDocID=6031224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424497959/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424497959/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424497959/sc.gif&client=summon&freeimage=true