Piecewise one dimensional Self Organizing Map for fast feature extraction

It is well known that the problem arising from high dimensionality of data should be considered in pattern recognition field. Face recognition databases are usually high dimensionality, especially when limited training samples are available for each subject. Traditional techniques perform dimensiona...

Full description

Saved in:
Bibliographic Details
Published in:2010 10th International Conference on Intelligent Systems Design and Applications pp. 633 - 638
Main Author: Sagheer, A
Format: Conference Proceeding
Language:English
Published: IEEE 01.11.2010
Subjects:
ISBN:1424481341, 9781424481347
ISSN:2164-7143
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract It is well known that the problem arising from high dimensionality of data should be considered in pattern recognition field. Face recognition databases are usually high dimensionality, especially when limited training samples are available for each subject. Traditional techniques perform dimensionality reduction are unable to solve this problem smoothly, which makes feature extraction task much difficult. As such, a novel method performs feature extraction and dimensionality reduction for high-dimensional data is needed. In this paper, a new algorithm for traditional Self Organizing Map (SOM) is presented to cope with this problem with low computation cost. It is shown here that the computation cost of the proposed approach, comparing to traditional SOM is reduced into O(d 1 + d 2 +...+ d N ) instead of O(d 1 × d 2 ×... × d N ), where d j is the number of neurons through a dimension d j of the feature map. Experiments are carried out using benchmark database show that the proposed algorithm is a good alternate to traditional SOM, especially, when high-dimensional feature space is desired.
AbstractList It is well known that the problem arising from high dimensionality of data should be considered in pattern recognition field. Face recognition databases are usually high dimensionality, especially when limited training samples are available for each subject. Traditional techniques perform dimensionality reduction are unable to solve this problem smoothly, which makes feature extraction task much difficult. As such, a novel method performs feature extraction and dimensionality reduction for high-dimensional data is needed. In this paper, a new algorithm for traditional Self Organizing Map (SOM) is presented to cope with this problem with low computation cost. It is shown here that the computation cost of the proposed approach, comparing to traditional SOM is reduced into O(d 1 + d 2 +...+ d N ) instead of O(d 1 × d 2 ×... × d N ), where d j is the number of neurons through a dimension d j of the feature map. Experiments are carried out using benchmark database show that the proposed algorithm is a good alternate to traditional SOM, especially, when high-dimensional feature space is desired.
Author Sagheer, A
Author_xml – sequence: 1
  givenname: A
  surname: Sagheer
  fullname: Sagheer, A
  email: alaa@ieee.org
  organization: Math. Dept., South Valley Univ., Aswan, Egypt
BookMark eNpFUMlqwzAUVGkKTdJ8QOlFP-BUm7UcQ7oZUlJI7uFZfgoqjhMsly5fX0EDPQ0zMAszIaPu2CEht5zNOWfuvto8LOaCZVpqa7gTF2TClVDKcqnt5T9RfETGgmtVGK7kNZml9M5YNhpnnRmT6i2ix8-YkOYG2sQDdikeO2jpBttA1_0euvgTuz19hRMNx54GSAMNCMNHjxS_hh78kB035CpAm3B2xinZPj1uly_Fav1cLRerIjo2FN5C0Bq8DrI2tXbMNaxxWcJaBFZqLrlCFbwNNWAeGmqvmWxKVSOURoCckru_2IiIu1MfD9B_784vyF9G5FFq
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISDA.2010.5687192
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1424481368
142448135X
9781424481361
9781424481354
EndPage 638
ExternalDocumentID 5687192
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
AAWTH
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-c8af66ac6f3b7b6909d0d9f66eb2f0561314e4fc8fbae000fbc603d54bea572a3
IEDL.DBID RIE
ISBN 1424481341
9781424481347
ISSN 2164-7143
IngestDate Wed Aug 27 02:53:10 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-c8af66ac6f3b7b6909d0d9f66eb2f0561314e4fc8fbae000fbc603d54bea572a3
PageCount 6
ParticipantIDs ieee_primary_5687192
PublicationCentury 2000
PublicationDate 2010-Nov.
PublicationDateYYYYMMDD 2010-11-01
PublicationDate_xml – month: 11
  year: 2010
  text: 2010-Nov.
PublicationDecade 2010
PublicationTitle 2010 10th International Conference on Intelligent Systems Design and Applications
PublicationTitleAbbrev ISDA
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001079897
ssj0000527502
Score 1.4615937
Snippet It is well known that the problem arising from high dimensionality of data should be considered in pattern recognition field. Face recognition databases are...
SourceID ieee
SourceType Publisher
StartPage 633
SubjectTerms Accuracy
computation complexity
face recognition
Feature extraction
Image recognition
Neurons
principal rows analysis
self organizing maps
Testing
Training
Title Piecewise one dimensional Self Organizing Map for fast feature extraction
URI https://ieeexplore.ieee.org/document/5687192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA61ePBUtRXf5ODRtelmN4-jqMWClkKL9FaS7AQWpC3tVv--STZtEbx4253Dbpghj5nJ930I3RGqNNNMJCSVJsmM9ELulCa5TQGoyrkMOmQfb3w4FNOpHDXQ_Q4LAwDh8hk8-MfQyy8WZuNLZd2cueO9dAvuAeesxmrt6ikk90zl6b6-QrgUQVsldRlB4mW-t7gu4UnMtnRP8Z3HjmePyO5g_PxYX_qKP_ylvBI2nn7rf0M-Rp09gg-PdnvTCWrA_BS1thIOOM7oNhqMSjDwXa4BL-aAC8_1X_N04DF8Whyhmu4b-F0tsTvhYqvWFbYQCEGxW9pXNTSigyb9l8nTaxLVFZJSkioxQlnGlGGWaq5djiwLUkhncqm2DWlFL4PMGmG1AudPqw0jtMgzDS6CqaJnqDl3IztH2BSacqMtK2iWmVRJ4eIvrNKcEe3sF6jtHTNb1vwZs-iTy7_NV-godOgD3u8aNavVBm7QofmqyvXqNgT9B8YPpxY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG0ImugJFYzf9uDRlbLtdtujUQlEICQQw4203WlCYoDAon_ftrtATLx4253Dtpnt18z0vYfQA6FKc81FRGJpImakF3KnNEpsDEBVksqgQ_bRSwcDMZnIYQU97rAwABAun8GTfwy1_GxhNj5V1ky4O95Lt-AeJIzFpEBr7TIqJPFc5fE-w0JSKYK6SuxigsgLfW-RXcLTmG0Jn8r3tKx5tohsdkevz8W1r7LJX9orYetp1_7X6RPU2GP48HC3O52iCszPUG0r4oDLOV1H3eEMDHzP1oAXc8CZZ_svmDrwCD4tLsGa7hu4r5bYnXGxVescWwiUoNgt7qsCHNFA4_bb-KUTlfoK0UySPDJCWc6V4ZbqVLsoWWYkk87kgm0bAosWA2aNsFqB86fVhhOaJUyD-4exoueoOnc9u0DYZJqmRlueUcZMrKRwI0BYpVNOtLNforp3zHRZMGhMS59c_W2-R0edcb837XUH79foONTrA_rvBlXz1QZu0aH5ymfr1V0YAD-rLapd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+10th+International+Conference+on+Intelligent+Systems+Design+and+Applications&rft.atitle=Piecewise+one+dimensional+Self+Organizing+Map+for+fast+feature+extraction&rft.au=Sagheer%2C+A&rft.date=2010-11-01&rft.pub=IEEE&rft.isbn=9781424481347&rft.issn=2164-7143&rft.spage=633&rft.epage=638&rft_id=info:doi/10.1109%2FISDA.2010.5687192&rft.externalDocID=5687192
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2164-7143&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2164-7143&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2164-7143&client=summon