Reliability analysis using artificial neural networks

A probabilistic analysis approach is developed by extending the Monte Carlo simulation. The Multilayer perceptron with backpropagation learning algorithm is applied in reliability analysis as the substitute of finite element solver. The reliability of a tunnel is analyzed as an example. Through Mont...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2010 Sixth International Conference on Natural Computation Ročník 4; s. 1783 - 1787
Hlavní autori: Changqing Qi, Jimin Wu
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.08.2010
Predmet:
ISBN:1424459583, 9781424459582
ISSN:2157-9555
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A probabilistic analysis approach is developed by extending the Monte Carlo simulation. The Multilayer perceptron with backpropagation learning algorithm is applied in reliability analysis as the substitute of finite element solver. The reliability of a tunnel is analyzed as an example. Through Monte Carlo simulations, the input and output samples of the network are obtained. As comparing to the responses obtained by Monte Carlo simulations with finite element solver, the network performs high accuracy and fast training speed. The results show that the proposed approach is a promising tool for stochastic analysis inasmuch as the error with respect to finite element solver is negligible.
ISBN:1424459583
9781424459582
ISSN:2157-9555
DOI:10.1109/ICNC.2010.5584442