Artificial Neural Network based dynamic modelling of indigenous pneumatic muscle actuators

Robots are increasingly becoming popular medical devices, helping surgeons and practitioners as surgical, rehabilitation or service robots. Robots have been proved commendable in working together with patients and practitioners to achieve the common goal of well-being. Apart from high power to weigh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2012 IEEE/ASME 8th International Conference on Mechatronic and Embedded Systems and Applications S. 190 - 195
Hauptverfasser: Jamwal, Prashant K, Xie, Sheng Quan
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.07.2012
Schlagworte:
ISBN:9781467323475, 1467323470
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Robots are increasingly becoming popular medical devices, helping surgeons and practitioners as surgical, rehabilitation or service robots. Robots have been proved commendable in working together with patients and practitioners to achieve the common goal of well-being. Apart from high power to weight ratio and accuracy, robots are expected to be safe and flexible. At The University of Auckland we had earlier developed robots for ankle joint and lower limb rehabilitation using McKibben pneumatic muscle actuators (PMA) which were safe and flexible. However, these actuators had larger response time and hysteresis apart from compromised actuation limits. As a result of our further research we have been able to develop inhouse pleated PMA (PPMA) in our laboratory which show improved response time with low hysteresis. The newly developed actuators have larger actuation as well. In order to cope with the non-linear and transient nature of these actuators, this paper further proposes a new Artificial Neural Network (ANN) based approach. To optimize ANN model parameters a hybrid approach combing back propagation (BP) algorithm with Modified Genetic Algorithm (MGA) is developed. Results show that the hybrid approach is able to model the PPMA behaviour closely.
AbstractList Robots are increasingly becoming popular medical devices, helping surgeons and practitioners as surgical, rehabilitation or service robots. Robots have been proved commendable in working together with patients and practitioners to achieve the common goal of well-being. Apart from high power to weight ratio and accuracy, robots are expected to be safe and flexible. At The University of Auckland we had earlier developed robots for ankle joint and lower limb rehabilitation using McKibben pneumatic muscle actuators (PMA) which were safe and flexible. However, these actuators had larger response time and hysteresis apart from compromised actuation limits. As a result of our further research we have been able to develop inhouse pleated PMA (PPMA) in our laboratory which show improved response time with low hysteresis. The newly developed actuators have larger actuation as well. In order to cope with the non-linear and transient nature of these actuators, this paper further proposes a new Artificial Neural Network (ANN) based approach. To optimize ANN model parameters a hybrid approach combing back propagation (BP) algorithm with Modified Genetic Algorithm (MGA) is developed. Results show that the hybrid approach is able to model the PPMA behaviour closely.
Author Jamwal, Prashant K
Xie, Sheng Quan
Author_xml – sequence: 1
  givenname: Prashant K
  surname: Jamwal
  fullname: Jamwal, Prashant K
  email: pjam025@aucklanduni.ac.nz
  organization: Department of Mechanical Engineering, The University of Auckland, Auckland
– sequence: 2
  givenname: Sheng Quan
  surname: Xie
  fullname: Xie, Sheng Quan
  email: s.xie@auckland.ac.nz
  organization: Department of Mechanical Engineering, The University of Auckland, Auckland
BookMark eNpVUM1OwzAYCwIkYOwBEJe8QEd-mqQ5TtP4kQYc2InL9DX5MgXadGpaob09A3bBF8uWZVm-ImepS0jIDWczzpm9e16-zWeCcTHTwiil2QmZWlPxUhspZFmJ03_aqAsyzfmDHXBwudWX5H3eDzFEF6GhLzj2vzR8df0nrSGjp36foI2Otp3HpolpS7tAY_Jxi6kbM90lHFsYfhJjdg1ScMMIQ9fna3IeoMk4PfKErO-X68VjsXp9eFrMV0W0bCicQllX2tX6sAdKLnXJQHgrvNEBQIHyBkNZa1ZWwWk0TnJRKWdtVSMPRk7I7V9tRMTNro8t9PvN8RD5DTJtVzE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MESA.2012.6275560
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467323482
1467323497
1467323489
9781467323499
EndPage 195
ExternalDocumentID 6275560
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-c5e3b86cb6196a413640a2d92d76faa5a5d7ef4b6048fc6e7c31285c998be1f73
IEDL.DBID RIE
ISBN 9781467323475
1467323470
IngestDate Wed Aug 27 02:53:34 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-c5e3b86cb6196a413640a2d92d76faa5a5d7ef4b6048fc6e7c31285c998be1f73
PageCount 6
ParticipantIDs ieee_primary_6275560
PublicationCentury 2000
PublicationDate 2012-July
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-July
PublicationDecade 2010
PublicationTitle 2012 IEEE/ASME 8th International Conference on Mechatronic and Embedded Systems and Applications
PublicationTitleAbbrev MESA
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000781196
Score 1.5018528
Snippet Robots are increasingly becoming popular medical devices, helping surgeons and practitioners as surgical, rehabilitation or service robots. Robots have been...
SourceID ieee
SourceType Publisher
StartPage 190
SubjectTerms Actuators
Artificial neural networks
Dynamic Modelling
Genetic algorithms
Hysteresis
Load modeling
Muscles
Neurons
Pleated Pneumatic Muscle Actuators
Title Artificial Neural Network based dynamic modelling of indigenous pneumatic muscle actuators
URI https://ieeexplore.ieee.org/document/6275560
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09a8MwEBVp6JCpLUnpNxo61kksyZI9hpLQoQ2BZghdgj5OkKFOSOL-_upk41Lo0smyBcacdTx9vPeOkEdhPIR5KiSuAJsI5FHlPuVhIsd9bjJhBY9C4Vc1n-erVbHokKdWCwMAkXwGQ2zGs3y3tRVulY3QUTcg9Ak5UUrWWq12PwVNa1J06uth7nPGhWotnZr7rDnVTMfF6G36PkFiFxs2L_1VXSWCy-zsf591TgY_Kj26aPHngnSg7JOPyT6yf8Kwomi8ES-R6U0RsBx1dQl6GkvgoBadbj3dtG6tdFdCFW1c6Wd1CGOKapSYYE2eAVnOpsvnl6Spn5BsivExsRlwk0trwhpJ6gBWUow1cwVzSnqtM505BV4YGZLYWwnK8gBWmQ0LMAOpV_ySdMttCVeEstSnhQj9yoFgHnLhREhcU4DMmfbmmvQxLOtd7ZCxbiJy8_fjW9LDyNek1zvSPe4ruCen9uu4Oewf4m_9Bi7noWg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na8IwFH84N5inbejY93LYcVXbpF9HGYpjKsI8yC7SJC_gYa2o3d-_vFg6Brvs1DaFUl7yePn4fQA8CWnQzlPR0ykqTxCOKjE-txM5bhIZCiW4IwpP4tksWS7TeQOeay4MIjrwGXbp1p3l60KVtFXWI0VdW6GP4Jicsyq2Vr2jQrI1Pmn1tSj7ecBFXIs6Vc9hda7p99PedPg-IGhX0K0--8tfxZWX0dn_fuwcOj88PTavK9AFNDBvw8dg6_A_dmAxkt5wF4f1ZlSyNNMHE3rmTHCIjc4Kw9a1Xivb5Fg6IVf2We7sqGIZkUzIlacDi9Fw8TL2KgcFb532954KkcskUtKukqLMRiwS_SzQaaDjyGRZmIU6RiNkZNPYqAhjxW25CpVdgkn0TcwvoZkXOV4BC3zjp8K-jzWKwGAitLCpK1OMkiAz8hraFJbV5qCRsaoicvN38yOcjhfTyWryOnu7hRb1wgECewfN_bbEezhRX_v1bvvguvgbyaOksQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2012+IEEE%2FASME+8th+International+Conference+on+Mechatronic+and+Embedded+Systems+and+Applications&rft.atitle=Artificial+Neural+Network+based+dynamic+modelling+of+indigenous+pneumatic+muscle+actuators&rft.au=Jamwal%2C+Prashant+K&rft.au=Xie%2C+Sheng+Quan&rft.date=2012-07-01&rft.pub=IEEE&rft.isbn=9781467323475&rft.spage=190&rft.epage=195&rft_id=info:doi/10.1109%2FMESA.2012.6275560&rft.externalDocID=6275560
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467323475/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467323475/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781467323475/sc.gif&client=summon&freeimage=true