A real-time anomaly detection algorithm/or water quality data using dual time-moving windows

Anomaly data in real-time water quality monitoring systems can cause false alarms and significantly decrease system stability and reliability. We propose a novel anomaly detection algorithm for water quality data using dual time-moving windows, which can identify anomaly data from historical pattern...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2017 Seventh International Conference on Innovative Computing Technology (INTECH) S. 36 - 41
Hauptverfasser: Jin Zhang, Xiaohui Zhu, Yong Yue, Wong, Prudence W. H.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.08.2017
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Anomaly data in real-time water quality monitoring systems can cause false alarms and significantly decrease system stability and reliability. We propose a novel anomaly detection algorithm for water quality data using dual time-moving windows, which can identify anomaly data from historical patterns in real-time. The algorithm is based on an autoregressive linear combination model, a prediction interval with dual time-moving windows and a backtracking verification strategy. We have tested the algorithm using 3-month water quality data of PH from a real water quality monitoring station in a river system. Experimental results show that our novel anomaly detection algorithm can significantly decrease the rate of false positive and has better anomaly detection performance than AD and ADAM algorithms.
AbstractList Anomaly data in real-time water quality monitoring systems can cause false alarms and significantly decrease system stability and reliability. We propose a novel anomaly detection algorithm for water quality data using dual time-moving windows, which can identify anomaly data from historical patterns in real-time. The algorithm is based on an autoregressive linear combination model, a prediction interval with dual time-moving windows and a backtracking verification strategy. We have tested the algorithm using 3-month water quality data of PH from a real water quality monitoring station in a river system. Experimental results show that our novel anomaly detection algorithm can significantly decrease the rate of false positive and has better anomaly detection performance than AD and ADAM algorithms.
Author Jin Zhang
Wong, Prudence W. H.
Yong Yue
Xiaohui Zhu
Author_xml – sequence: 1
  surname: Jin Zhang
  fullname: Jin Zhang
  email: sgjzha31@liverpool.ac.uk
  organization: Dept. of Comput. Sci. & Software Eng., Xi'an Jiaotong-Liverpool Univ., Suzhou, China
– sequence: 2
  surname: Xiaohui Zhu
  fullname: Xiaohui Zhu
  email: bobzhu@liverpool.ac.uk
  organization: Dept. of Comput. Sci. & Software Eng., Xi'an Jiaotong-Liverpool Univ., Suzhou, China
– sequence: 3
  surname: Yong Yue
  fullname: Yong Yue
  email: yong.yue@xjtlu.edu.cn
  organization: Dept. of Comput. Sci. & Software Eng., Xi'an Jiaotong-Liverpool Univ., Suzhou, China
– sequence: 4
  givenname: Prudence W. H.
  surname: Wong
  fullname: Wong, Prudence W. H.
  email: pwong@liverpool.ac.uk
  organization: Dept. of Comput. Sci., Univ. of Liverpool, Liverpool, UK
BookMark eNotj8tqAjEYRlNoF9X2CdzkBWbMZS7JUgZbBbGbWRbkn-SPDcwk7Rg7-PZV6uqDw8eBMyOPIQYkZMFZzjnTy-2-XTebXDBe54ozUQj-QGa8ZJpJrbR-Jp8rOiL0WfIDUghxgP5CLSY0ycdAoT_G0aevYRlHOkHCkf6coffpeoIE9Hzy4UjtFdGbIRvi7w1MPtg4nV7Ik4P-hK_3nZP2bd02m2z38b5tVrvMa5YyI6RSxpWiq6C2puZgEAslURadVdxxWxZcaSeY44UBYStVauM6QGMqhkrOyeJf6xHx8D36AcbL4d4r_wC5Y1H9
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/INTECH.2017.8102421
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1509039899
9781509039890
EndPage 41
ExternalDocumentID 8102421
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-c2388cf52b6a7dc71acee483e34bd81f1d54189f20f14ca2d6859cfbaecc60e83
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:25 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-c2388cf52b6a7dc71acee483e34bd81f1d54189f20f14ca2d6859cfbaecc60e83
PageCount 6
ParticipantIDs ieee_primary_8102421
PublicationCentury 2000
PublicationDate 2017-Aug.
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-Aug.
PublicationDecade 2010
PublicationTitle 2017 Seventh International Conference on Innovative Computing Technology (INTECH)
PublicationTitleAbbrev INTECH
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6447737
Snippet Anomaly data in real-time water quality monitoring systems can cause false alarms and significantly decrease system stability and reliability. We propose a...
SourceID ieee
SourceType Publisher
StartPage 36
SubjectTerms anomaly data detection
autoregressive linear combination model
backtracking verification
Computers
Conferences
dual time-moving windows
Title A real-time anomaly detection algorithm/or water quality data using dual time-moving windows
URI https://ieeexplore.ieee.org/document/8102421
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEA5WeuipLVr6JoceG03cbJI9Fql4KOLBg4eCzCZZK-huWVel_75JdrEUeukthCEJM4d55PtmEHrKKDAr4pRQSIFwE0mSGBETpaUPECQoEyz9JicTNZ8n0xZ6PnJhrLUBfGZ7fhn-8k2hd75U1lfMexSX65xIKWquVtNIiNGk73vIDscerSV7jeSvkSnBY4zO_3fXBer-UO_w9OhULlHL5h30_oJdbLcmfhA8hrzYwPoLG1sFGFWOYb0sXI7_sekXJT644LHENVfSCUEF2GPbl9iTrrA_gWxCFQEfXDpeHLZdNBu9zoZj0oxFIKuEVkQ7J6t0Fg9SAdJoycA9iavIRjw1imXMxJypJBvQjHENAyNUnOgsBWcsQa2KrlA7L3J7jbBhnPn2U9zGkoPhwCkIJVOXJtJUSHGDOl4xi8-68cWi0cnt39t36MzrvkbH3aN2Ve7sAzrV-2q1LR-Dtb4BZQ2Z0w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6lCnpSacW3OXg0bbLNJtmjFEvFWnrooQehzCbZWmh3Zbu1-O9NdhdF8OIthCEJM4d55PtmELpLKDArwphQiIFw05MkMiIkSksfIEhQprT0SI7HajaLJg10_82FsdaW4DPb8cvyL99keutLZV3FvEdxuc5eyHlAK7ZW3UqI0ajru8j2hx6vJTu17K-hKaXPGBz977Zj1P4h3-HJt1s5QQ2bttDrA3bR3Yr4UfAY0mwNq09sbFECqVIMq0Xmsvy3dTfL8c6Fjzmu2JJOCArAHt2-wJ52hf0JZF3WEfDOJeTZbtNG08HjtD8k9WAEsoxoQbRzs0onYRALkEZLBu5JXPVsj8dGsYSZkDMVJQFNGNcQGKHCSCcxOHMJalXvFDXTLLVnCBvGmW9AxW0oORgOnIJQMnaJIo2FFOeo5RUzf69aX8xrnVz8vX2LDobTl9F89DR-vkSH3g4VVu4KNYt8a6_Rvv4olpv8prTcF5FznRo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2017+Seventh+International+Conference+on+Innovative+Computing+Technology+%28INTECH%29&rft.atitle=A+real-time+anomaly+detection+algorithm%2For+water+quality+data+using+dual+time-moving+windows&rft.au=Jin+Zhang&rft.au=Xiaohui+Zhu&rft.au=Yong+Yue&rft.au=Wong%2C+Prudence+W.+H.&rft.date=2017-08-01&rft.pub=IEEE&rft.spage=36&rft.epage=41&rft_id=info:doi/10.1109%2FINTECH.2017.8102421&rft.externalDocID=8102421