Optimal control of nonlinear inverted pendulum dynamical system with disturbance input using PID controller & LQR

Optimal response of the controlled dynamical systems is desired hence for that is the optimal control. Linear quadratic regulator (LQR), an optimal control method, and PID control which are generally used for control of the linear dynamical systems have been used in this paper to control the nonline...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:2011 IEEE International Conference on Control System, Computing and Engineering s. 540 - 545
Hlavní autori: Prasad, L. B., Tyagi, B., Gupta, H. O.
Médium: Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: IEEE 01.11.2011
Predmet:
ISBN:9781457716409, 1457716402
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Optimal response of the controlled dynamical systems is desired hence for that is the optimal control. Linear quadratic regulator (LQR), an optimal control method, and PID control which are generally used for control of the linear dynamical systems have been used in this paper to control the nonlinear dynamical system. The inverted pendulum, a highly nonlinear unstable system is used as a benchmark for implementing the control methods. In this paper the modeling and control design of nonlinear inverted pendulum-cart dynamic system with disturbance input using PID control & LQR have been presented. The nonlinear system states are fed to LQR which is designed using linear state-space model. Here PID & LQR control methods have been implemented to control the cart position and stabilize the inverted pendulum in vertically upright position. The MATLAB-SIMULINK models have been developed for simulation of the control schemes. The simulation results justify the comparative advantages of LQR control methods.
AbstractList Optimal response of the controlled dynamical systems is desired hence for that is the optimal control. Linear quadratic regulator (LQR), an optimal control method, and PID control which are generally used for control of the linear dynamical systems have been used in this paper to control the nonlinear dynamical system. The inverted pendulum, a highly nonlinear unstable system is used as a benchmark for implementing the control methods. In this paper the modeling and control design of nonlinear inverted pendulum-cart dynamic system with disturbance input using PID control & LQR have been presented. The nonlinear system states are fed to LQR which is designed using linear state-space model. Here PID & LQR control methods have been implemented to control the cart position and stabilize the inverted pendulum in vertically upright position. The MATLAB-SIMULINK models have been developed for simulation of the control schemes. The simulation results justify the comparative advantages of LQR control methods.
Author Tyagi, B.
Prasad, L. B.
Gupta, H. O.
Author_xml – sequence: 1
  givenname: L. B.
  surname: Prasad
  fullname: Prasad, L. B.
  email: erlbprasad@gmail.com
  organization: Dept. of Electr. Eng., Indian Inst. of Technol. Roorkee, Roorkee, India
– sequence: 2
  givenname: B.
  surname: Tyagi
  fullname: Tyagi, B.
  email: btyagfee@iitr.ernet.in
  organization: Dept. of Electr. Eng., Indian Inst. of Technol. Roorkee, Roorkee, India
– sequence: 3
  givenname: H. O.
  surname: Gupta
  fullname: Gupta, H. O.
  email: harifee@iitr.ernet.in
  organization: Dept. of Electr. Eng., Indian Inst. of Technol. Roorkee, Roorkee, India
BookMark eNpVUDtPwzAYNAIkoPQXdPHE1mLHiR8jCq9Klcqje-Xan8EocYLtgPrviUQZuOV0w93p7gKdhC4AQjNKFpQSdb2s69f6blEQShecKlLJ6ghNlZC0rISgvKT8-J8m6gxNU_ogIwQpJBfn6HPdZ9_qBpsu5Ng1uHN47Gl8AB2xD18QM1jcQ7BDM7TY7oNuvRkNaZ8ytPjb53dsfcpD3OlgYPT0Q8ZD8uENPy1v_4IbiPgKr55fLtGp002C6YEnaHN_t6kf56v1w7K-Wc29InluqCOFVro0zDBKhLEGeGVMIZkREsROOkq0MBwY0wV3llPhJCsFUU5bU7AJmv3GegDY9nEcGffbw0_sB07zYBY
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCSCE.2011.6190585
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781457716416
1457716429
1457716410
9781457716423
EndPage 545
ExternalDocumentID 6190585
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-c1f02a9a4c3c3107cdce65cc283c78e7b8f10a7c6e33a26fd617f834709fadc23
IEDL.DBID RIE
ISBN 9781457716409
1457716402
IngestDate Wed Aug 27 02:46:16 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-c1f02a9a4c3c3107cdce65cc283c78e7b8f10a7c6e33a26fd617f834709fadc23
PageCount 6
ParticipantIDs ieee_primary_6190585
PublicationCentury 2000
PublicationDate 2011-Nov.
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-Nov.
PublicationDecade 2010
PublicationTitle 2011 IEEE International Conference on Control System, Computing and Engineering
PublicationTitleAbbrev ICCSCE
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000702867
Score 1.7705534
Snippet Optimal response of the controlled dynamical systems is desired hence for that is the optimal control. Linear quadratic regulator (LQR), an optimal control...
SourceID ieee
SourceType Publisher
StartPage 540
SubjectTerms disturbance input
Equations
Force
Inverted pendulum
LQR
Mathematical model
Nonlinear dynamical systems
nonlinear system
Optimal control
PID control
Simulation
Title Optimal control of nonlinear inverted pendulum dynamical system with disturbance input using PID controller & LQR
URI https://ieeexplore.ieee.org/document/6190585
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8MgFCbb4sGTms34OxyMJ-tooVDOdYtLzJy6w24LfYBZMrdZW_9-oe1mTLx4K00ghPcCj8f7vg-h64xybTIwAY8lDRiTNsiISgLOmXD21oTYWmxCjMfJbCYnLXS7w8IYY6riM3PnP6u3fL2G0qfK-i7YJy68baO2ELzGau3yKc51o4SLCrsVC38LINGW0qlpy4Z1KCSyP0rT13RQU3g2w_7SV6mOl-HB_yZ2iHo_OD082Z1AR6hlVl308eR2gXe1xE0VOl5bvKoJMVSOFysvwGw09tq3PvOHda1J7zrUrM7Yp2axduYv88z7hOuzKQvsK-Tf8GR0vx14aXJ8gx-fX3poOhxM04egEVYIFpIUAYSWREoqBhRcdCdAg-ExgIs0QCRGZIkNiRLADaUq4la7KMcmlAkirdIQ0WPUcfM2JwhTYIZrYDEJLQPnDRBKrd0uQt1FxSTZKer61ZpvauqMebNQZ3__Pkf7Vcq2gvpdoE6Rl-YS7cFXsfjMryp7fwPkRqpf
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwGG0QTfSkBoy_7cF4ctKtXbueEQIREZUDN7J9bQ0JAs7Nv992GxgTL962JW2a9kv7-vZ97yF0nVCudALa46GkHmPSeAmJI49zJux6K0JMaTYhhsNoMpGjGrrd1MJorYvkM33nHot_-WoJuaPKWhbsEwtvt9B2yFhAymqtDaNigzeIuCiqt0Lh7gEkWIs6Ve-y0h3yiWz12-3XdqcU8aw6_uWwUhww3f3_De0ANX8q9fBocwYdoppeNNDHk90H3uM5rvLQ8dLgRSmJEad4tnAWzFph537ruD-sSld626DUdcaOnMXKBkCeJi4qbJtVnmGXI_-GR_37dcdzneIbPHh-aaJxtzNu97zKWsGbSZJ54BsSxDJmQMHiOwEKNA8BLNYAEWmRRMYnsQCuKY0DbpTFOSaiTBBpYgUBPUJ1O259jDAFprkCFhLfMLDxAL5Uyu4j1F5VdJScoIabremqFM-YVhN1-vfnK7TbGz8OpoP-8OEM7RUEblH4d47qWZrrC7QDX9nsM70s1v4b77Gtpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE+International+Conference+on+Control+System%2C+Computing+and+Engineering&rft.atitle=Optimal+control+of+nonlinear+inverted+pendulum+dynamical+system+with+disturbance+input+using+PID+controller+%26+LQR&rft.au=Prasad%2C+L.+B.&rft.au=Tyagi%2C+B.&rft.au=Gupta%2C+H.+O.&rft.date=2011-11-01&rft.pub=IEEE&rft.isbn=9781457716409&rft.spage=540&rft.epage=545&rft_id=info:doi/10.1109%2FICCSCE.2011.6190585&rft.externalDocID=6190585
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457716409/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457716409/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457716409/sc.gif&client=summon&freeimage=true