Locally Linear Embedding Algorithm with Adaptive Neighbors

How to choose a proper number of the neighbors is an important issue of the locally linear embedding algorithm. To investigate this issue, we propose an optimized locally linear embedding algorithm with adaptive neighbors (ANLLE). The ANLLE selects the neighbors with a locally adaptive criterion. In...

Full description

Saved in:
Bibliographic Details
Published in:2009 International Workshop on Intelligent Systems and Applications pp. 1 - 4
Main Authors: Huang, Lingzhu, Zheng, Lingxiang, Chen, Caiyue, Lu, Min
Format: Conference Proceeding
Language:English
Published: IEEE 01.05.2009
Subjects:
ISBN:9781424438938, 1424438934
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract How to choose a proper number of the neighbors is an important issue of the locally linear embedding algorithm. To investigate this issue, we propose an optimized locally linear embedding algorithm with adaptive neighbors (ANLLE). The ANLLE selects the neighbors with a locally adaptive criterion. In addition, a new data point mapping method that computes the low-dimensional description of the correspondents is introduced in the ANLLE. The experiment results of the manifold expansion and the face recognition showed that the optimized algorithm is more effective than the original algorithm. The result of the present work implied that the ANLLE could improve the linear correlation of the neighbors and the data points. Moreover, it maintains the distance between the data points and reduces the application difficulty of the locally linear embedding algorithm.
AbstractList How to choose a proper number of the neighbors is an important issue of the locally linear embedding algorithm. To investigate this issue, we propose an optimized locally linear embedding algorithm with adaptive neighbors (ANLLE). The ANLLE selects the neighbors with a locally adaptive criterion. In addition, a new data point mapping method that computes the low-dimensional description of the correspondents is introduced in the ANLLE. The experiment results of the manifold expansion and the face recognition showed that the optimized algorithm is more effective than the original algorithm. The result of the present work implied that the ANLLE could improve the linear correlation of the neighbors and the data points. Moreover, it maintains the distance between the data points and reduces the application difficulty of the locally linear embedding algorithm.
Author Chen, Caiyue
Huang, Lingzhu
Lu, Min
Zheng, Lingxiang
Author_xml – sequence: 1
  givenname: Lingzhu
  surname: Huang
  fullname: Huang, Lingzhu
  organization: Sch. of Inf. Sci. & Technol., Xiamen Univ., Xiamen
– sequence: 2
  givenname: Lingxiang
  surname: Zheng
  fullname: Zheng, Lingxiang
  email: lxzheng@xmu.edu.cn
  organization: Sch. of Inf. Sci. & Technol., Xiamen Univ., Xiamen
– sequence: 3
  givenname: Caiyue
  surname: Chen
  fullname: Chen, Caiyue
  organization: Sch. of Inf. Sci. & Technol., Xiamen Univ., Xiamen
– sequence: 4
  givenname: Min
  surname: Lu
  fullname: Lu, Min
  organization: Sch. of Inf. Sci. & Technol., Xiamen Univ., Xiamen
BookMark eNo1T81Kw0AYXNGCpuYF9LIvkLi_ST5vobQaCHqw4LHsbr6kK_kpSVD69rZY5zDDwDDMBOSmH3ok5IGzmHMGT8Vn8ZHHgjGINUsFKHVFAq6EUjIDJa5JCGn272W2IME5C4xprW5JOE1f7ASlhUzgjjyXgzNte6Sl79GMdN1ZrCrfNzRvm2H0876jPyemeWUOs_9G-oa-2dthnO7JojbthOFFl2S7WW9Xr1H5_lKs8jLywObIcWNrZ6SyPNHMCYNK1pm0_DxApHWinTaV5ZA5DsBV4mpMnGCYgpRaW7kkj3-1HhF3h9F3ZjzuLtflL-t3S88
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IWISA.2009.5072944
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1424438942
9781424438945
EndPage 4
ExternalDocumentID 5072944
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AARBI
AAWTH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-c1abfca34b1650c2ae43f83b1523627f65c5adb198c199146cfe6c20e793355b3
IEDL.DBID RIE
ISBN 9781424438938
1424438934
IngestDate Wed Aug 27 05:37:58 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCN 2009900554
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-c1abfca34b1650c2ae43f83b1523627f65c5adb198c199146cfe6c20e793355b3
PageCount 4
ParticipantIDs ieee_primary_5072944
PublicationCentury 2000
PublicationDate 2009-May
PublicationDateYYYYMMDD 2009-05-01
PublicationDate_xml – month: 05
  year: 2009
  text: 2009-May
PublicationDecade 2000
PublicationTitle 2009 International Workshop on Intelligent Systems and Applications
PublicationTitleAbbrev IWISA
PublicationYear 2009
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000452369
Score 1.4405634
Snippet How to choose a proper number of the neighbors is an important issue of the locally linear embedding algorithm. To investigate this issue, we propose an...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Data structures
Euclidean distance
Face recognition
Information science
Nearest neighbor searches
Optimization methods
Space technology
Vectors
Title Locally Linear Embedding Algorithm with Adaptive Neighbors
URI https://ieeexplore.ieee.org/document/5072944
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5t8eBJpRW1Kjl4NHYfabLxVqTFQikFi_ZWkuxEC33RbgX_vZndbUXw4i2bwLIzeUz2y3xfCLkTiDS6FJj0iz_jsTZMgwpZCCqIXKSB57oFrwM5HCaTiRpVyP2BCwMAefIZPGAxP8tPV3aHUFmrjTLXnFdJVUpRcLUOeApKg8dC7blbGIf5XtKpfE72pJlAtfpv_ZdOIVdZvvXX9Sp5dOmd_O-7Tknjh6ZHR4cAdEYqsKyTxwFGp_kX9X-ZfhTT7sJAiu20M39fbWbZx4Ii-Eo7qV7jWkeHiI76obBtkHGvO356ZuUFCWymgozZUBtndcxN6PdZFh0buyQ2IXoikk60bVunJlSJxQQnLqwDYaMA_Jz02wwTn5PacrWEC0KtBCOFTZTzzhJGm1QbaZUMvF2Oa3NJ6mj2dF1IYExLi6_-rm6S4-LQBfMCr0kt2-zghhzZz2y23dzm_fYNUT-U4g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwED7mFPRJZRN_mwcfrWvXrG18G7KxYS0Dh-5tJOlFB_vF1gn-9-a6biL44lvTQuhd0lz65b7vAG4DQhpNik5oF3-H-1I5EoXneCjcuqlL5LluwWscJkk0GIheCe62XBhEzJPP8J4u87P8dKZXBJXVGiRzzfkO7FLlrIKttUVUSBzcD8SGvUWRmG9EnYp2tKHNuKLWfeu-NNeClUW_vwqs5PGlffi_NzuC6g9Rj_W2IegYSjitwENM8Wn8xex_pp3HrDVRmNJz1hy_zxaj7GPCCH5lzVTOabVjCeGjdjIsq9Bvt_qPHacokeCMhJs52pPKaOlz5dmdlibX-ibylUeeqIcmaOiGTJUnIk0pTjzQBgNdd9F-lXajofwTKE9nUzwFpkNUYaAjYayzAiVVKlWoRehauwyX6gwqZPZwvhbBGBYWn_99-wb2O_3neBh3k6cLOFgfwVCW4CWUs8UKr2BPf2aj5eI6H8NvSVyYKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2009+International+Workshop+on+Intelligent+Systems+and+Applications&rft.atitle=Locally+Linear+Embedding+Algorithm+with+Adaptive+Neighbors&rft.au=Huang%2C+Lingzhu&rft.au=Zheng%2C+Lingxiang&rft.au=Chen%2C+Caiyue&rft.au=Lu%2C+Min&rft.date=2009-05-01&rft.pub=IEEE&rft.isbn=9781424438938&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FIWISA.2009.5072944&rft.externalDocID=5072944
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424438938/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424438938/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424438938/sc.gif&client=summon&freeimage=true