A Parallel Tabu Search for the Unconstrained Binary Quadratic Programming problem
Although several sequential heuristics have been proposed for dealing with the Unconstrained Binary Quadratic Programming (UBQP), very little effort has been made for designing parallel algorithms for the UBQP. This paper propose a novel decentralized parallel search algorithm, called Parallel Elite...
Uloženo v:
| Vydáno v: | 2017 IEEE Congress on Evolutionary Computation (CEC) s. 557 - 564 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.06.2017
|
| Témata: | |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Although several sequential heuristics have been proposed for dealing with the Unconstrained Binary Quadratic Programming (UBQP), very little effort has been made for designing parallel algorithms for the UBQP. This paper propose a novel decentralized parallel search algorithm, called Parallel Elite Biased Tabu Search (PEBTS). It is based on D 2 TS, a state-of-the-art sequential UBQP metaheuristic. The key strategies in the PEBTS algorithm include: (i) a lazy distributed cooperation procedure to maintain diversity among different search processes and (ii) finely tuned bit-flip operators which can help the search escape local optima efficiently. Our experiments on the Tianhe-2 supercomputer with up to 24 computing cores show the accuracy of the efficiency of PEBTS compared with a straightforward parallel algorithm running multiple independent and non-cooperating D 2 TS processes. |
|---|---|
| DOI: | 10.1109/CEC.2017.7969360 |