How Chaos Theory improves data mining in research by means of ALEV

In this paper a method for data reduction is introduced. Aspects of Lyapunov, entropy and variance (ALEV) provide an approach for mining large stocks of time series data. Methods of artificial intelligence (AI) offer two different ways for modeling observation data: the recall times of expert system...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2008 Canadian Conference on Electrical and Computer Engineering s. 000703 - 000708
Hlavní autor: Toplak, W.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2008
Témata:
ISBN:9781424416424, 1424416426
ISSN:0840-7789
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper a method for data reduction is introduced. Aspects of Lyapunov, entropy and variance (ALEV) provide an approach for mining large stocks of time series data. Methods of artificial intelligence (AI) offer two different ways for modeling observation data: the recall times of expert systems (XPS) depend on the size of a knowledge base. Connectionist approaches like the multi-layer perceptron (MLP) have to be trained with a representative data set for mapping system behavior. While the duration of this learning process also depends on the amount of representative data the recall times are very short. On basis of the Mackey-Glass function a technique for visual data mining (VDM) is proposed. Performance tests on basis of real world traffic speed patterns from different observation time periods show that ALEV thins out large pattern stocks. Viability of data mining methods is increased and generalization quality remains the same.
ISBN:9781424416424
1424416426
ISSN:0840-7789
DOI:10.1109/CCECE.2008.4564626