How Chaos Theory improves data mining in research by means of ALEV

In this paper a method for data reduction is introduced. Aspects of Lyapunov, entropy and variance (ALEV) provide an approach for mining large stocks of time series data. Methods of artificial intelligence (AI) offer two different ways for modeling observation data: the recall times of expert system...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2008 Canadian Conference on Electrical and Computer Engineering s. 000703 - 000708
Hlavní autor: Toplak, W.
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 01.05.2008
Témata:
ISBN:9781424416424, 1424416426
ISSN:0840-7789
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper a method for data reduction is introduced. Aspects of Lyapunov, entropy and variance (ALEV) provide an approach for mining large stocks of time series data. Methods of artificial intelligence (AI) offer two different ways for modeling observation data: the recall times of expert systems (XPS) depend on the size of a knowledge base. Connectionist approaches like the multi-layer perceptron (MLP) have to be trained with a representative data set for mapping system behavior. While the duration of this learning process also depends on the amount of representative data the recall times are very short. On basis of the Mackey-Glass function a technique for visual data mining (VDM) is proposed. Performance tests on basis of real world traffic speed patterns from different observation time periods show that ALEV thins out large pattern stocks. Viability of data mining methods is increased and generalization quality remains the same.
AbstractList In this paper a method for data reduction is introduced. Aspects of Lyapunov, entropy and variance (ALEV) provide an approach for mining large stocks of time series data. Methods of artificial intelligence (AI) offer two different ways for modeling observation data: the recall times of expert systems (XPS) depend on the size of a knowledge base. Connectionist approaches like the multi-layer perceptron (MLP) have to be trained with a representative data set for mapping system behavior. While the duration of this learning process also depends on the amount of representative data the recall times are very short. On basis of the Mackey-Glass function a technique for visual data mining (VDM) is proposed. Performance tests on basis of real world traffic speed patterns from different observation time periods show that ALEV thins out large pattern stocks. Viability of data mining methods is increased and generalization quality remains the same.
Author Toplak, W.
Author_xml – sequence: 1
  givenname: W.
  surname: Toplak
  fullname: Toplak, W.
BookMark eNpVkM1KxDAUhSOO4Mw4L6CbvEBrkt7mZzmW6ggFN8XtkLS3NmLbIRmUvr0FZ-PicPg2H4ezIatxGpGQe85Szpl5LIqyKFPBmE4hlyCFvCI7ozQHAcAlZPz6HwtYkTXTwBKltLklmxg_GWOgJazJ02H6oUVvp0jrHqcwUz-cwvSNkbb2bOngRz9-UD_SgBFtaHrqZjqgHSOdOrqvyvc7ctPZr4i7S29J_VzWxSGp3l5ei32VeMPOiUPnJHdGddZZaME6yN2SpsFOLNS2BpUDA512QuXLdJ1b3TaQWxSZNNmWPPxpPSIeT8EPNszHywPZLzw6TtU
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CCECE.2008.4564626
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL) (UW System Shared)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781424416431
1424416434
EndPage 000708
ExternalDocumentID 4564626
Genre orig-research
GroupedDBID 29F
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i90t-bebb61b97faba4d4ab45bb45ccef24abdd9e7b494f8b27524485a8dc45ae23693
IEDL.DBID RIE
ISBN 9781424416424
1424416426
ISSN 0840-7789
IngestDate Wed Aug 27 02:14:57 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-bebb61b97faba4d4ab45bb45ccef24abdd9e7b494f8b27524485a8dc45ae23693
PageCount 6
ParticipantIDs ieee_primary_4564626
PublicationCentury 2000
PublicationDate 2008-May
PublicationDateYYYYMMDD 2008-05-01
PublicationDate_xml – month: 05
  year: 2008
  text: 2008-May
PublicationDecade 2000
PublicationTitle 2008 Canadian Conference on Electrical and Computer Engineering
PublicationTitleAbbrev CCECE
PublicationYear 2008
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0004864
ssj0000453620
Score 1.4006617
Snippet In this paper a method for data reduction is introduced. Aspects of Lyapunov, entropy and variance (ALEV) provide an approach for mining large stocks of time...
SourceID ieee
SourceType Publisher
StartPage 000703
SubjectTerms Artificial intelligence
Chaos
Chaos Theory
Computing Algorithms
Data mining
Database and Data Mining
Entropy
Expert systems
Humans
Information systems
Neural networks
Performance Evaluation
Road vehicles
Telecommunication traffic
Title How Chaos Theory improves data mining in research by means of ALEV
URI https://ieeexplore.ieee.org/document/4564626
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwED4B6tAufUDVtzx0bEpInNge2yiIASEGVLEh2zmLDCQVhFb993UeQCt16WDJ9mLrLPnO5-_7DuAxMTYISnjocGp8h9qQ3ZEm5A6X2rhaeMixOukxm0z4fC6mLXjac2EQsQKf4XPZrf7yk1xvy1RZv5Q-sQF4G9qMhTVXa59PsaGJvYvdAyeS19JRvETMMS52pC77PPDCndZTM6Y7No0r-lEUR3GNsWyW-1V3pXI7w9P_bfgMegf-HpnuPdM5tDC7gJMf0oNdeB3lnyRaynxDano-Sav0Am5ICRolq6pwBEkz0sgBLYn6Iiu0no3khryM47cezIbxLBo5TT0FJxVu4ShUKhwowYxUkiZUKhoo27RG49lRkghkigpquPJYYG3DA8kTTQOJnh8K_xI6WZ7hFRAt0PXVINC-rykKpYySrjHS-kGOLMBr6JbGWLzXihmLxg43f0_fwnGNwihhhHfQKdZbvIcj_VGkm_VDdczfAhqh0g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VggQsPArijQdGQtPESewRolRFhKpDhbpVtnNWMzRBfYD49ziPtiCxMFiyvdg6S77z-fu-A7hLtAmCEuZbjGrXoiZkt4T2mcWE0rbiDjIsTzoO-n02GvFBA-7XXBhELMFn-FB0y7_8JFfLIlXWLqRPTAC-BdsepY5dsbXWGRUTnJjb2N6wIlklHsUKzFzA-IrWZR4Ijr9Se6rHdMWnsXk7DKMwqlCW9YK_Kq-Ujqd78L8tH8LJhsFHBmvfdAQNzI5h_4f4YAueevknCScin5OKoE_SMsGAc1LARsm0LB1B0ozUgkATIr_IFI1vI7kmj3H0dgLDbjQMe1ZdUcFKub2wJErpdyQPtJCCJlRI6knTlELtmFGScAwk5VQz6QSesQ3zBEsU9QQ6rs_dU2hmeYZnQBRH25UdT7muosil1FLYWgvjCRkGHp5DqzDG-L3SzBjXdrj4e_oWdnvD13gcP_dfLmGvwmQUoMIraC5mS7yGHfWxSOezm_LIvwGkAaUZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+Canadian+Conference+on+Electrical+and+Computer+Engineering&rft.atitle=How+Chaos+Theory+improves+data+mining+in+research+by+means+of+ALEV&rft.au=Toplak%2C+W.&rft.date=2008-05-01&rft.pub=IEEE&rft.isbn=9781424416424&rft.issn=0840-7789&rft.spage=000703&rft.epage=000708&rft_id=info:doi/10.1109%2FCCECE.2008.4564626&rft.externalDocID=4564626
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0840-7789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0840-7789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0840-7789&client=summon