How Chaos Theory improves data mining in research by means of ALEV
In this paper a method for data reduction is introduced. Aspects of Lyapunov, entropy and variance (ALEV) provide an approach for mining large stocks of time series data. Methods of artificial intelligence (AI) offer two different ways for modeling observation data: the recall times of expert system...
Uloženo v:
| Vydáno v: | 2008 Canadian Conference on Electrical and Computer Engineering s. 000703 - 000708 |
|---|---|
| Hlavní autor: | |
| Médium: | Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.05.2008
|
| Témata: | |
| ISBN: | 9781424416424, 1424416426 |
| ISSN: | 0840-7789 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper a method for data reduction is introduced. Aspects of Lyapunov, entropy and variance (ALEV) provide an approach for mining large stocks of time series data. Methods of artificial intelligence (AI) offer two different ways for modeling observation data: the recall times of expert systems (XPS) depend on the size of a knowledge base. Connectionist approaches like the multi-layer perceptron (MLP) have to be trained with a representative data set for mapping system behavior. While the duration of this learning process also depends on the amount of representative data the recall times are very short. On basis of the Mackey-Glass function a technique for visual data mining (VDM) is proposed. Performance tests on basis of real world traffic speed patterns from different observation time periods show that ALEV thins out large pattern stocks. Viability of data mining methods is increased and generalization quality remains the same. |
|---|---|
| AbstractList | In this paper a method for data reduction is introduced. Aspects of Lyapunov, entropy and variance (ALEV) provide an approach for mining large stocks of time series data. Methods of artificial intelligence (AI) offer two different ways for modeling observation data: the recall times of expert systems (XPS) depend on the size of a knowledge base. Connectionist approaches like the multi-layer perceptron (MLP) have to be trained with a representative data set for mapping system behavior. While the duration of this learning process also depends on the amount of representative data the recall times are very short. On basis of the Mackey-Glass function a technique for visual data mining (VDM) is proposed. Performance tests on basis of real world traffic speed patterns from different observation time periods show that ALEV thins out large pattern stocks. Viability of data mining methods is increased and generalization quality remains the same. |
| Author | Toplak, W. |
| Author_xml | – sequence: 1 givenname: W. surname: Toplak fullname: Toplak, W. |
| BookMark | eNpVkM1KxDAUhSOO4Mw4L6CbvEBrkt7mZzmW6ggFN8XtkLS3NmLbIRmUvr0FZ-PicPg2H4ezIatxGpGQe85Szpl5LIqyKFPBmE4hlyCFvCI7ozQHAcAlZPz6HwtYkTXTwBKltLklmxg_GWOgJazJ02H6oUVvp0jrHqcwUz-cwvSNkbb2bOngRz9-UD_SgBFtaHrqZjqgHSOdOrqvyvc7ctPZr4i7S29J_VzWxSGp3l5ei32VeMPOiUPnJHdGddZZaME6yN2SpsFOLNS2BpUDA512QuXLdJ1b3TaQWxSZNNmWPPxpPSIeT8EPNszHywPZLzw6TtU |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IH CBEJK RIE RIO |
| DOI | 10.1109/CCECE.2008.4564626 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) (UW System Shared) IEEE Proceedings Order Plans (POP) 1998-present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISBN | 9781424416431 1424416434 |
| EndPage | 000708 |
| ExternalDocumentID | 4564626 |
| Genre | orig-research |
| GroupedDBID | 29F 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
| ID | FETCH-LOGICAL-i90t-bebb61b97faba4d4ab45bb45ccef24abdd9e7b494f8b27524485a8dc45ae23693 |
| IEDL.DBID | RIE |
| ISBN | 9781424416424 1424416426 |
| ISSN | 0840-7789 |
| IngestDate | Wed Aug 27 02:14:57 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-bebb61b97faba4d4ab45bb45ccef24abdd9e7b494f8b27524485a8dc45ae23693 |
| PageCount | 6 |
| ParticipantIDs | ieee_primary_4564626 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-May |
| PublicationDateYYYYMMDD | 2008-05-01 |
| PublicationDate_xml | – month: 05 year: 2008 text: 2008-May |
| PublicationDecade | 2000 |
| PublicationTitle | 2008 Canadian Conference on Electrical and Computer Engineering |
| PublicationTitleAbbrev | CCECE |
| PublicationYear | 2008 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0004864 ssj0000453620 |
| Score | 1.4006617 |
| Snippet | In this paper a method for data reduction is introduced. Aspects of Lyapunov, entropy and variance (ALEV) provide an approach for mining large stocks of time... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 000703 |
| SubjectTerms | Artificial intelligence Chaos Chaos Theory Computing Algorithms Data mining Database and Data Mining Entropy Expert systems Humans Information systems Neural networks Performance Evaluation Road vehicles Telecommunication traffic |
| Title | How Chaos Theory improves data mining in research by means of ALEV |
| URI | https://ieeexplore.ieee.org/document/4564626 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwED4B6tAufUDVtzx0bEpInNge2yiIASEGVLEh2zmLDCQVhFb993UeQCt16WDJ9mLrLPnO5-_7DuAxMTYISnjocGp8h9qQ3ZEm5A6X2rhaeMixOukxm0z4fC6mLXjac2EQsQKf4XPZrf7yk1xvy1RZv5Q-sQF4G9qMhTVXa59PsaGJvYvdAyeS19JRvETMMS52pC77PPDCndZTM6Y7No0r-lEUR3GNsWyW-1V3pXI7w9P_bfgMegf-HpnuPdM5tDC7gJMf0oNdeB3lnyRaynxDano-Sav0Am5ICRolq6pwBEkz0sgBLYn6Iiu0no3khryM47cezIbxLBo5TT0FJxVu4ShUKhwowYxUkiZUKhoo27RG49lRkghkigpquPJYYG3DA8kTTQOJnh8K_xI6WZ7hFRAt0PXVINC-rykKpYySrjHS-kGOLMBr6JbGWLzXihmLxg43f0_fwnGNwihhhHfQKdZbvIcj_VGkm_VDdczfAhqh0g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6VggQsPArijQdGQtPESewRolRFhKpDhbpVtnNWMzRBfYD49ziPtiCxMFiyvdg6S77z-fu-A7hLtAmCEuZbjGrXoiZkt4T2mcWE0rbiDjIsTzoO-n02GvFBA-7XXBhELMFn-FB0y7_8JFfLIlXWLqRPTAC-BdsepY5dsbXWGRUTnJjb2N6wIlklHsUKzFzA-IrWZR4Ijr9Se6rHdMWnsXk7DKMwqlCW9YK_Kq-Ujqd78L8tH8LJhsFHBmvfdAQNzI5h_4f4YAueevknCScin5OKoE_SMsGAc1LARsm0LB1B0ozUgkATIr_IFI1vI7kmj3H0dgLDbjQMe1ZdUcFKub2wJErpdyQPtJCCJlRI6knTlELtmFGScAwk5VQz6QSesQ3zBEsU9QQ6rs_dU2hmeYZnQBRH25UdT7muosil1FLYWgvjCRkGHp5DqzDG-L3SzBjXdrj4e_oWdnvD13gcP_dfLmGvwmQUoMIraC5mS7yGHfWxSOezm_LIvwGkAaUZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2008+Canadian+Conference+on+Electrical+and+Computer+Engineering&rft.atitle=How+Chaos+Theory+improves+data+mining+in+research+by+means+of+ALEV&rft.au=Toplak%2C+W.&rft.date=2008-05-01&rft.pub=IEEE&rft.isbn=9781424416424&rft.issn=0840-7789&rft.spage=000703&rft.epage=000708&rft_id=info:doi/10.1109%2FCCECE.2008.4564626&rft.externalDocID=4564626 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0840-7789&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0840-7789&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0840-7789&client=summon |

