Hybrid Compressed Sensing of images

We consider the problem of recovering a signal/image (x) with a k-sparse representation, from hybrid (complex and real), noiseless linear samples (y) using a mixture of complex-valued sparse and real-valued dense projections within a single matrix. The proposed Hybrid Compressed Sensing (HCS) employ...

Full description

Saved in:
Bibliographic Details
Published in:2010 IEEE International Workshop on Multimedia Signal Processing pp. 99 - 104
Main Authors: Moghadam, Abdolreza Abdolhosseini, Radha, Hayder
Format: Conference Proceeding
Language:English
Published: IEEE 01.10.2010
Subjects:
ISBN:1424481104, 9781424481101
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the problem of recovering a signal/image (x) with a k-sparse representation, from hybrid (complex and real), noiseless linear samples (y) using a mixture of complex-valued sparse and real-valued dense projections within a single matrix. The proposed Hybrid Compressed Sensing (HCS) employs the complex-sparse part of the projection matrix to divide the n-dimensional signal (x) into subsets. In turn, each subset of the signal (coefficients) is mapped onto a complex sample of the measurement vector (y). Under a worst-case scenario of such sparsity-induced mapping, when the number of complex sparse measurements is sufficiently large then this mapping leads to the isolation of a significant fraction of the k non-zero coefficients into different complex measurement samples from y. Using a simple property of complex numbers (namely complex phases) one can identify the isolated non-zeros of x. After reducing the effect of the identified non-zero coefficients from the compressive samples, we utilize the real-valued dense submatrix to form a full rank system of equations to recover the signal values in the remaining indices (that are not recovered by the sparse complex projection part). We show that the proposed hybrid approach can recover a k-sparse signal (with high probability) while requiring only m ≈ 3k 3 √(n/2k) real measurements (where each complex sample is counted as two real measurements). We also derive expressions for the optimal mix of complex-sparse and real-dense rows within an HCS projection matrix. Further, in a practical range of sparsity ratio (k/n) suitable for images, the hybrid approach outperforms even the most complex compressed sensing frameworks (namely basis pursuit with dense Gaussian matrices). The theoretical complexity of HCS is less than the complexity of solving a full-rank system of m linear equations. In practice, the complexity can be lower than this bound.
AbstractList We consider the problem of recovering a signal/image (x) with a k-sparse representation, from hybrid (complex and real), noiseless linear samples (y) using a mixture of complex-valued sparse and real-valued dense projections within a single matrix. The proposed Hybrid Compressed Sensing (HCS) employs the complex-sparse part of the projection matrix to divide the n-dimensional signal (x) into subsets. In turn, each subset of the signal (coefficients) is mapped onto a complex sample of the measurement vector (y). Under a worst-case scenario of such sparsity-induced mapping, when the number of complex sparse measurements is sufficiently large then this mapping leads to the isolation of a significant fraction of the k non-zero coefficients into different complex measurement samples from y. Using a simple property of complex numbers (namely complex phases) one can identify the isolated non-zeros of x. After reducing the effect of the identified non-zero coefficients from the compressive samples, we utilize the real-valued dense submatrix to form a full rank system of equations to recover the signal values in the remaining indices (that are not recovered by the sparse complex projection part). We show that the proposed hybrid approach can recover a k-sparse signal (with high probability) while requiring only m ≈ 3k 3 √(n/2k) real measurements (where each complex sample is counted as two real measurements). We also derive expressions for the optimal mix of complex-sparse and real-dense rows within an HCS projection matrix. Further, in a practical range of sparsity ratio (k/n) suitable for images, the hybrid approach outperforms even the most complex compressed sensing frameworks (namely basis pursuit with dense Gaussian matrices). The theoretical complexity of HCS is less than the complexity of solving a full-rank system of m linear equations. In practice, the complexity can be lower than this bound.
Author Moghadam, Abdolreza Abdolhosseini
Radha, Hayder
Author_xml – sequence: 1
  givenname: Abdolreza Abdolhosseini
  surname: Moghadam
  fullname: Moghadam, Abdolreza Abdolhosseini
  email: abdolhos@msu.edu
  organization: Dept. of Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI, USA
– sequence: 2
  givenname: Hayder
  surname: Radha
  fullname: Radha, Hayder
  email: radha@msu.edu
  organization: Dept. of Electr. & Comput. Eng., Michigan State Univ., East Lansing, MI, USA
BookMark eNo1j01Lw0AURZ-ooK35AeIm4Dp13szLfCwlqBVaFNp9mcm8KRGblIyb_nsD1ru5nM253Blc9UPPAPcoFojCPa3Xm8-FFBPWWksh8AIKZyySJLKIaC9h9g-CbqDI-UtMqaUhK2_hcXkKYxfLZjgcR86ZY7nhPnf9vhxS2R38nvMdXCf_nbk49xy2ry_bZlmtPt7em-dV1TnxU4XgmLwnrduoPRmioNAp51FpWRvXhtrIFIxVFl3yxnhM2EahTZwQUc3h4U_bMfPuOE7j42l3vqV-AaaYQJE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MMSP.2010.5662001
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781424481118
1424481120
9781424481125
1424481112
EndPage 104
ExternalDocumentID 5662001
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-bb9e4aa466cd6a4744b31939a1362579cb572fb783819fa77a1f1cd067d9fa113
IEDL.DBID RIE
ISBN 1424481104
9781424481101
IngestDate Wed Aug 27 02:55:36 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-bb9e4aa466cd6a4744b31939a1362579cb572fb783819fa77a1f1cd067d9fa113
PageCount 6
ParticipantIDs ieee_primary_5662001
PublicationCentury 2000
PublicationDate 2010-Oct.
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-Oct.
PublicationDecade 2010
PublicationTitle 2010 IEEE International Workshop on Multimedia Signal Processing
PublicationTitleAbbrev MMSP
PublicationYear 2010
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000527482
Score 1.4551942
Snippet We consider the problem of recovering a signal/image (x) with a k-sparse representation, from hybrid (complex and real), noiseless linear samples (y) using a...
SourceID ieee
SourceType Publisher
StartPage 99
SubjectTerms Complexity theory
Compressed sensing
Decoding
Equations
Image coding
Indexes
iterative decoding algorithms
Sparse matrices
sparse projections
Title Hybrid Compressed Sensing of images
URI https://ieeexplore.ieee.org/document/5662001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwED6S0KFTW5LSN4Z2rBvLVnzSXBqyJBiSIVvQs3ioXfKC_vtKiuNS6NJN0iAkhPTd6b7vDuBJMWu9bR_nhtqYKncWnNM81iZDNMiSDGUoNoGzGVsuedGB51YLY4wJ5DPz4pshlq9rtfNfZUNnengKUBe6iHjQarX_KcnI-VcsPWq3mIM1ekzp1PRJE9UkCR9Op_PiQOxqJv1VXSWAy_jsf8s6h8GPSi8qWvy5gI6p-vA4-fIarMjf85AXXEdzz1Gv3qPaRuWHez42A1iM3xavk7gphBCXPNnGUnJDhaB5rnQuKFIq3cXJuCAOfUbIlRxhaiUy731ZgSiIJUo7HNKuS0h2Cb2qrswVREkilTMJ00xwH6LVMtVKOp9MZVo4X4ldQ9_vb_V5SHWxarZ28_fwLZyGYHrgtt1Bb7vemXs4UfttuVk_hPP5BuY-iqU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB1qFfSk0orfBvTo2s1udpOcxVKxLYX20FvJp-zBbWm3gv_eJN1WBC_ekhxCQkjeTOa9GYAHxaz1tn2UG2IjotxZcE7ySJuUUkNZnFIZik3Q4ZBNp3zUgMedFsYYE8hn5sk3Qyxfz9Xaf5V1nOnhKUB7sJ8RkuCNWmv3oxJnzsNiyVa9xRywkW1Sp7qP67gmjnlnMBiPNtSuetpf9VUCvHSP_7ewE2j_6PTQaIdAp9AwZQvue19ehYX8TQ-ZwTUae5Z6-Y7mFhUf7gFZtWHSfZk896K6FEJU8LiKpOSGCEHyXOlcEEqIdFcn5QI7_MkoVzKjiZWUef_LCkoFtlhph0TadTFOz6BZzktzDiiOpXJGYZIK7oO0WiZaSeeVqVQL5y2xC2j5_c0Wm2QXs3prl38P38FhbzLoz_qvw7crOAqh9cB0u4ZmtVybGzhQn1WxWt6Gs_oGV5qN7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2010+IEEE+International+Workshop+on+Multimedia+Signal+Processing&rft.atitle=Hybrid+Compressed+Sensing+of+images&rft.au=Moghadam%2C+Abdolreza+Abdolhosseini&rft.au=Radha%2C+Hayder&rft.date=2010-10-01&rft.pub=IEEE&rft.isbn=9781424481101&rft.spage=99&rft.epage=104&rft_id=info:doi/10.1109%2FMMSP.2010.5662001&rft.externalDocID=5662001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424481101/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424481101/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781424481101/sc.gif&client=summon&freeimage=true