Quantum-inspired Multiobjective Evolutionary Algorithm for Multiobjective 0/1 Knapsack Problems

This paper proposes a multiobjective evolutionary algorithm (MOEA) inspired by quantum computing, which is named quantum-inspired multiobjective evolutionary algorithm (QMEA). In the previous papers, quantum-inspired evolutionary algorithm (QEA) was proved to be better than conventional genetic algo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:2006 IEEE International Conference on Evolutionary Computation s. 2601 - 2606
Hlavní autoři: Yehoon Kim, Jong-Hwan Kim, Kuk-Hyun Han
Médium: Konferenční příspěvek
Jazyk:angličtina
Vydáno: IEEE 2006
Témata:
ISBN:9780780394872, 0780394879
ISSN:1089-778X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes a multiobjective evolutionary algorithm (MOEA) inspired by quantum computing, which is named quantum-inspired multiobjective evolutionary algorithm (QMEA). In the previous papers, quantum-inspired evolutionary algorithm (QEA) was proved to be better than conventional genetic algorithms for single-objective optimization problems. To improve the quality of the nondominated set as well as the diversity of population in multiobjective problems, QMEA is proposed by employing the concept and principles of quantum computing such as uncertainty, superposition, and interference. Experimental results pertaining to the multiobjective 0/1 knapsack problem show that QMEA finds solutions close to the Pareto-optimal front while maintaining a better spread of nondominated set.
ISBN:9780780394872
0780394879
ISSN:1089-778X
DOI:10.1109/CEC.2006.1688633