Scalable Algorithms for Adaptive Statistical Designs
We present a scalable, high-performance solution to multidimensional recurrences that arise in adaptive statistical designs. Adaptive designs are an important class of learning algorithms for a stochastic environment, and we focus on the problem of optimally assigning patients to treatments in clini...
Gespeichert in:
| Veröffentlicht in: | ACM/IEEE SC 2000 Conference (SC'00) S. 6 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
2000
|
| Schlagworte: | |
| ISBN: | 9780780398023, 0780398025 |
| ISSN: | 1063-9535 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We present a scalable, high-performance solution to multidimensional recurrences that arise in adaptive statistical designs. Adaptive designs are an important class of learning algorithms for a stochastic environment, and we focus on the problem of optimally assigning patients to treatments in clinical trials. While adaptive designs have significant ethical and cost advantages, they are rarely utilized because of the complexity of optimizing and analyzing them. Computational challenges include massive memory requirements, few calculations per memory access, and multiply-nested loops with dynamic indices. We analyze the effects of various parallelization options, and while standard approaches do not work well, with effort an efficient, highly scalable program can be developed. This allows us to solve problems thousands of times more complex than those solved previously, which helps make adaptive designs practical. Further, our work applies to many other problems involving neighbor recurrences, such as generalized string matching. |
|---|---|
| AbstractList | We present a scalable, high-performance solution to multidimensional recurrences that arise in adaptive statistical designs. Adaptive designs are an important class of learning algorithms for a stochastic environment, and we focus on the problem of optimally assigning patients to treatments in clinical trials. While adaptive designs have significant ethical and cost advantages, they are rarely utilized because of the complexity of optimizing and analyzing them. Computational challenges include massive memory requirements, few calculations per memory access, and multiply-nested loops with dynamic indices. We analyze the effects of various parallelization options, and while standard approaches do not work well, with effort an efficient, highly scalable program can be developed. This allows us to solve problems thousands of times more complex than those solved previously, which helps make adaptive designs practical. Further, our work applies to many other problems involving neighbor recurrences, such as generalized string matching. |
| Author | Oehmke, R. Stout, Q.F. Hardwick, J. |
| Author_xml | – sequence: 1 givenname: R. surname: Oehmke fullname: Oehmke, R. organization: University of Michigan – sequence: 2 givenname: J. surname: Hardwick fullname: Hardwick, J. – sequence: 3 givenname: Q.F. surname: Stout fullname: Stout, Q.F. |
| BookMark | eNotjMtqwzAURAVNoHktu-rGP-D0yrIed2ncNi0EunD2QbKuUxXHDpYo9O9raJmBw8Bh1mwxjAMx9sBhzzngU1PvC4B5ABTqju1QG5gr0EAhFmzFQYkcpZD3bB3jF4DQqPSKlU1re-t6yqr-Mk4hfV5j1o1TVnl7S-GbsibZFGIKs5c9UwyXIW7ZsrN9pN0_N-z0-nKq3_Ljx-G9ro55QEi5w05z4YXuCl06Z5ALBa1T3mikznM0Goha5Zx31syhlgxIiUiyROfFhj3-3QYiOt-mcLXTz5lLLDRH8QuJpkZt |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/SC.2000.10026 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 6 |
| ExternalDocumentID | 1592719 |
| Genre | orig-research |
| GroupedDBID | 29P 6IE 6IL ALMA_UNASSIGNED_HOLDINGS APO CBEJK M43 RIE RIL |
| ID | FETCH-LOGICAL-i90t-b9f713d37f274bb891360cb6d879efd19870eec6bbdba8a8aece805599e549bd3 |
| IEDL.DBID | RIE |
| ISBN | 9780780398023 0780398025 |
| ISSN | 1063-9535 |
| IngestDate | Tue Aug 26 17:42:00 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-b9f713d37f274bb891360cb6d879efd19870eec6bbdba8a8aece805599e549bd3 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_1592719 |
| PublicationCentury | 2000 |
| PublicationDate | 20000000 |
| PublicationDateYYYYMMDD | 2000-01-01 |
| PublicationDate_xml | – year: 2000 text: 20000000 |
| PublicationDecade | 2000 |
| PublicationTitle | ACM/IEEE SC 2000 Conference (SC'00) |
| PublicationTitleAbbrev | SUPERC |
| PublicationYear | 2000 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0037967 ssj0001120450 |
| Score | 1.2780479 |
| Snippet | We present a scalable, high-performance solution to multidimensional recurrences that arise in adaptive statistical designs. Adaptive designs are an important... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 6 |
| SubjectTerms | Algorithm design and analysis bandit models Clinical trials computational learning theory Cost function Design optimization dynamic domain decomposition Dynamic programming experimental algorithms load balancing Medical treatment memory-intensive computing message-passing Multidimensional systems Performance analysis sequential analysis Standards development Stochastic processes |
| Title | Scalable Algorithms for Adaptive Statistical Designs |
| URI | https://ieeexplore.ieee.org/document/1592719 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB6s9NCTbbX0TQ49duuu2c3jKLbSQxFBKd4k2cy2glXx0d_fTFyVQi9lL9lAIA-Syczk-z6AByOKLCv8TsuF01GqfMnE6EjMzLS4SZwJjDfvb7LXU6OR7lfgcY-FQcTw-AyfqBhy-W6ebyhU1vSmtyWJ4_NISrHFah3iKQkRq8e7U5hLHdRjvcfDKUWZBZddxVz77mQl887unx_IN5uDTkCvBGpS8UtyJVicbu1_fT2FxgG6x_p7o3QGFZydQ22n3cDKrVyHdOAXh2BTrD39mC8n68-vFfMXWNZ2ZkFHIKNraGBxNlP2HN55rBow7L4MO69RqaAQTXS8jqwuvA_quCy872ktZSRFnFvhlNRYOIo3xIi5sNZZo_yHOaqYOMjQu43W8QuozuYzvATmjELU3DlV2JT7FjKzaWaFTkzKrZFXUKc5GC-2HBnjcvjXf1ffwMkW0k6hjFuorpcbvIPj_NuPa3kfFvYHnuKdZQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4QNNETKhjf9uDRlYXudtsjQQ1GJCQQw42021klQSA8_P12ygIx8WL20m3SpI-005np930Ad1pkcZy5nZYKq4JIupIO0ZKYma5zXbPaM968t5NORw4GqluA-y0WBhH94zN8oKLP5dtpuqJQWdWZ3npCHJ97pJyVo7V2EZUaUauHm3OYJ8rrxzqfh1OSMvZOuwy5ch2Kc-6dzT_f0W9We02PX_HkpOKX6Iq3Oc-l__X2CCo78B7rbs3SMRRwcgKljXoDyzdzGaKeWx4CTrHG-GM6Hy0_vxbMXWFZw-oZHYKMLqKex1mP2aN_6bGoQP_5qd9sBbmGQjBS4TIwKnNeqOVJ5rxPYygnKcLUCCsThZmliEOImApjrNHSfZiiDImFDJ3jaCw_heJkOsEzYFZLRMWtlZmJuGuRxCaKjVA1HXGjk3Mo0xwMZ2uWjGE-_Iu_q2_hoNV_aw_bL53XSzhcA9wpsHEFxeV8hdewn367Mc5v_CL_AApnoK4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=ACM%2FIEEE+SC+2000+Conference+%28SC%2700%29&rft.atitle=Scalable+Algorithms+for+Adaptive+Statistical+Designs&rft.au=Oehmke%2C+R.&rft.au=Hardwick%2C+J.&rft.au=Stout%2C+Q.F.&rft.date=2000-01-01&rft.pub=IEEE&rft.isbn=9780780398023&rft.issn=1063-9535&rft.spage=6&rft.epage=6&rft_id=info:doi/10.1109%2FSC.2000.10026&rft.externalDocID=1592719 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-9535&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-9535&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-9535&client=summon |

