Scalable Algorithms for Adaptive Statistical Designs

We present a scalable, high-performance solution to multidimensional recurrences that arise in adaptive statistical designs. Adaptive designs are an important class of learning algorithms for a stochastic environment, and we focus on the problem of optimally assigning patients to treatments in clini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM/IEEE SC 2000 Conference (SC'00) S. 6
Hauptverfasser: Oehmke, R., Hardwick, J., Stout, Q.F.
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 2000
Schlagworte:
ISBN:9780780398023, 0780398025
ISSN:1063-9535
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present a scalable, high-performance solution to multidimensional recurrences that arise in adaptive statistical designs. Adaptive designs are an important class of learning algorithms for a stochastic environment, and we focus on the problem of optimally assigning patients to treatments in clinical trials. While adaptive designs have significant ethical and cost advantages, they are rarely utilized because of the complexity of optimizing and analyzing them. Computational challenges include massive memory requirements, few calculations per memory access, and multiply-nested loops with dynamic indices. We analyze the effects of various parallelization options, and while standard approaches do not work well, with effort an efficient, highly scalable program can be developed. This allows us to solve problems thousands of times more complex than those solved previously, which helps make adaptive designs practical. Further, our work applies to many other problems involving neighbor recurrences, such as generalized string matching.
AbstractList We present a scalable, high-performance solution to multidimensional recurrences that arise in adaptive statistical designs. Adaptive designs are an important class of learning algorithms for a stochastic environment, and we focus on the problem of optimally assigning patients to treatments in clinical trials. While adaptive designs have significant ethical and cost advantages, they are rarely utilized because of the complexity of optimizing and analyzing them. Computational challenges include massive memory requirements, few calculations per memory access, and multiply-nested loops with dynamic indices. We analyze the effects of various parallelization options, and while standard approaches do not work well, with effort an efficient, highly scalable program can be developed. This allows us to solve problems thousands of times more complex than those solved previously, which helps make adaptive designs practical. Further, our work applies to many other problems involving neighbor recurrences, such as generalized string matching.
Author Oehmke, R.
Stout, Q.F.
Hardwick, J.
Author_xml – sequence: 1
  givenname: R.
  surname: Oehmke
  fullname: Oehmke, R.
  organization: University of Michigan
– sequence: 2
  givenname: J.
  surname: Hardwick
  fullname: Hardwick, J.
– sequence: 3
  givenname: Q.F.
  surname: Stout
  fullname: Stout, Q.F.
BookMark eNotjMtqwzAURAVNoHktu-rGP-D0yrIed2ncNi0EunD2QbKuUxXHDpYo9O9raJmBw8Bh1mwxjAMx9sBhzzngU1PvC4B5ABTqju1QG5gr0EAhFmzFQYkcpZD3bB3jF4DQqPSKlU1re-t6yqr-Mk4hfV5j1o1TVnl7S-GbsibZFGIKs5c9UwyXIW7ZsrN9pN0_N-z0-nKq3_Ljx-G9ro55QEi5w05z4YXuCl06Z5ALBa1T3mikznM0Goha5Zx31syhlgxIiUiyROfFhj3-3QYiOt-mcLXTz5lLLDRH8QuJpkZt
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SC.2000.10026
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 6
ExternalDocumentID 1592719
Genre orig-research
GroupedDBID 29P
6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
M43
RIE
RIL
ID FETCH-LOGICAL-i90t-b9f713d37f274bb891360cb6d879efd19870eec6bbdba8a8aece805599e549bd3
IEDL.DBID RIE
ISBN 9780780398023
0780398025
ISSN 1063-9535
IngestDate Tue Aug 26 17:42:00 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-b9f713d37f274bb891360cb6d879efd19870eec6bbdba8a8aece805599e549bd3
PageCount 1
ParticipantIDs ieee_primary_1592719
PublicationCentury 2000
PublicationDate 20000000
PublicationDateYYYYMMDD 2000-01-01
PublicationDate_xml – year: 2000
  text: 20000000
PublicationDecade 2000
PublicationTitle ACM/IEEE SC 2000 Conference (SC'00)
PublicationTitleAbbrev SUPERC
PublicationYear 2000
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0037967
ssj0001120450
Score 1.2780479
Snippet We present a scalable, high-performance solution to multidimensional recurrences that arise in adaptive statistical designs. Adaptive designs are an important...
SourceID ieee
SourceType Publisher
StartPage 6
SubjectTerms Algorithm design and analysis
bandit models
Clinical trials
computational learning theory
Cost function
Design optimization
dynamic domain decomposition
Dynamic programming
experimental algorithms
load balancing
Medical treatment
memory-intensive computing
message-passing
Multidimensional systems
Performance analysis
sequential analysis
Standards development
Stochastic processes
Title Scalable Algorithms for Adaptive Statistical Designs
URI https://ieeexplore.ieee.org/document/1592719
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LawIxEB6s9NCTbbX0TQ49duuu2c3jKLbSQxFBKd4k2cy2glXx0d_fTFyVQi9lL9lAIA-Syczk-z6AByOKLCv8TsuF01GqfMnE6EjMzLS4SZwJjDfvb7LXU6OR7lfgcY-FQcTw-AyfqBhy-W6ebyhU1vSmtyWJ4_NISrHFah3iKQkRq8e7U5hLHdRjvcfDKUWZBZddxVz77mQl887unx_IN5uDTkCvBGpS8UtyJVicbu1_fT2FxgG6x_p7o3QGFZydQ22n3cDKrVyHdOAXh2BTrD39mC8n68-vFfMXWNZ2ZkFHIKNraGBxNlP2HN55rBow7L4MO69RqaAQTXS8jqwuvA_quCy872ktZSRFnFvhlNRYOIo3xIi5sNZZo_yHOaqYOMjQu43W8QuozuYzvATmjELU3DlV2JT7FjKzaWaFTkzKrZFXUKc5GC-2HBnjcvjXf1ffwMkW0k6hjFuorpcbvIPj_NuPa3kfFvYHnuKdZQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4QNNETKhjf9uDRlYXudtsjQQ1GJCQQw42021klQSA8_P12ygIx8WL20m3SpI-005np930Ad1pkcZy5nZYKq4JIupIO0ZKYma5zXbPaM968t5NORw4GqluA-y0WBhH94zN8oKLP5dtpuqJQWdWZ3npCHJ97pJyVo7V2EZUaUauHm3OYJ8rrxzqfh1OSMvZOuwy5ch2Kc-6dzT_f0W9We02PX_HkpOKX6Iq3Oc-l__X2CCo78B7rbs3SMRRwcgKljXoDyzdzGaKeWx4CTrHG-GM6Hy0_vxbMXWFZw-oZHYKMLqKex1mP2aN_6bGoQP_5qd9sBbmGQjBS4TIwKnNeqOVJ5rxPYygnKcLUCCsThZmliEOImApjrNHSfZiiDImFDJ3jaCw_heJkOsEzYFZLRMWtlZmJuGuRxCaKjVA1HXGjk3Mo0xwMZ2uWjGE-_Iu_q2_hoNV_aw_bL53XSzhcA9wpsHEFxeV8hdewn367Mc5v_CL_AApnoK4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=ACM%2FIEEE+SC+2000+Conference+%28SC%2700%29&rft.atitle=Scalable+Algorithms+for+Adaptive+Statistical+Designs&rft.au=Oehmke%2C+R.&rft.au=Hardwick%2C+J.&rft.au=Stout%2C+Q.F.&rft.date=2000-01-01&rft.pub=IEEE&rft.isbn=9780780398023&rft.issn=1063-9535&rft.spage=6&rft.epage=6&rft_id=info:doi/10.1109%2FSC.2000.10026&rft.externalDocID=1592719
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-9535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-9535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-9535&client=summon