A meta-graph approach to analyze subgraph-centric distributed programming models

Component-centric distributed graph processing models that use bulk synchronous parallel (BSP) execution have grown popular. These overcome short-comings of Big Data platforms like Hadoop for processing large graphs. However, literature on formal analysis of these component-centric abstractions for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2016 IEEE International Conference on Big Data (Big Data) S. 37 - 47
Hauptverfasser: Dindokar, Ravikant, Choudhury, Neel, Simmhan, Yogesh
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.12.2016
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Component-centric distributed graph processing models that use bulk synchronous parallel (BSP) execution have grown popular. These overcome short-comings of Big Data platforms like Hadoop for processing large graphs. However, literature on formal analysis of these component-centric abstractions for different graphs, graph partitioning, and graph algorithms is lacking. Here, we propose an coarse-grained analytical approach based on a meta-graph sketch to examine the characteristics of component-centric graph programming models. We apply this sketch to subgraph- and block-centric abstractions, and draw a comparison with vertex-centric models like Google's Pregel. We explore the impact of various graph partitioning techniques on the meta-graph, and the impact of the meta-graph on graph algorithms. This decouples large unwieldy graphs and their partitioning artifacts from their algorithmic analysis. We evaluate our approach for five spatial and powerlaw graphs, four different partitioning strategies, and for PageRank and Breadth First Search algorithms. We show that this novel analytical technique is simple, scalable and yet gives a reliable estimate of the number of supersteps, and the communication and computational complexities of the algorithms for various graphs.
AbstractList Component-centric distributed graph processing models that use bulk synchronous parallel (BSP) execution have grown popular. These overcome short-comings of Big Data platforms like Hadoop for processing large graphs. However, literature on formal analysis of these component-centric abstractions for different graphs, graph partitioning, and graph algorithms is lacking. Here, we propose an coarse-grained analytical approach based on a meta-graph sketch to examine the characteristics of component-centric graph programming models. We apply this sketch to subgraph- and block-centric abstractions, and draw a comparison with vertex-centric models like Google's Pregel. We explore the impact of various graph partitioning techniques on the meta-graph, and the impact of the meta-graph on graph algorithms. This decouples large unwieldy graphs and their partitioning artifacts from their algorithmic analysis. We evaluate our approach for five spatial and powerlaw graphs, four different partitioning strategies, and for PageRank and Breadth First Search algorithms. We show that this novel analytical technique is simple, scalable and yet gives a reliable estimate of the number of supersteps, and the communication and computational complexities of the algorithms for various graphs.
Author Choudhury, Neel
Dindokar, Ravikant
Simmhan, Yogesh
Author_xml – sequence: 1
  givenname: Ravikant
  surname: Dindokar
  fullname: Dindokar, Ravikant
  email: ravikant7@grads.cds.iisc.ac.in
  organization: Dept. of Comput. & Data Sci., Indian Inst. of Sci., Bangalore, India
– sequence: 2
  givenname: Neel
  surname: Choudhury
  fullname: Choudhury, Neel
  organization: Dept. of Comput. & Data Sci., Indian Inst. of Sci., Bangalore, India
– sequence: 3
  givenname: Yogesh
  surname: Simmhan
  fullname: Simmhan, Yogesh
  email: simmhan@cds.iisc.ac.in
  organization: Dept. of Comput. & Data Sci., Indian Inst. of Sci., Bangalore, India
BookMark eNotj71OwzAUhY0EA5Q-AQx-gQQ7tmN7LOVXqgRD9-o6vkktxUnkuEN5eiLo9A3f0dE5d-R6GAck5JGzknNmn55D9wIZyorxutRGMmX0FVlbbbistbCMKX1Lvjc0YoaiSzAdKUxTGqE50jxSGKA__yCdT-5PFg0OOYWG-jAvdKeMni7xRcYYho7G0WM_35ObFvoZ1xeuyP7tdb_9KHZf75_bza4IluXCWbRK1t56K5ytPKtrpRY6wXhjGLjKAaL2mktVyXZZ61C0grcghTGqFSvy8F8bEPEwpRAhnQ-Xm-IX1ANOSQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BigData.2016.7840587
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467390057
1467390054
EndPage 47
ExternalDocumentID 7840587
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i90t-b9e9546d9d93b92d0665592db301c80ab2baee7d714524f390be3f31fa43885f3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:43 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-b9e9546d9d93b92d0665592db301c80ab2baee7d714524f390be3f31fa43885f3
PageCount 11
ParticipantIDs ieee_primary_7840587
PublicationCentury 2000
PublicationDate 2016-Dec.
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-Dec.
PublicationDecade 2010
PublicationTitle 2016 IEEE International Conference on Big Data (Big Data)
PublicationTitleAbbrev BigData
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6444746
Snippet Component-centric distributed graph processing models that use bulk synchronous parallel (BSP) execution have grown popular. These overcome short-comings of...
SourceID ieee
SourceType Publisher
StartPage 37
SubjectTerms Algorithm design and analysis
Analytical models
Big data
Computational modeling
Data models
Partitioning algorithms
Programming
Title A meta-graph approach to analyze subgraph-centric distributed programming models
URI https://ieeexplore.ieee.org/document/7840587
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b8IwED4B6tCpraDqWx46NpDEdmyPfaFOiIGBDflxqTIAFQSG_vraTkpVqUsnW7ZlS2ed_Ljvvg_gXrJMWCe8p0mWJ8xikHnxrxR_V7BaGn_BECaKTYjJRM7natqBh0MuDCJG8BkOQzXG8t3a7sJX2Uj41wiXogtdIYomV6vNhstSNXqq3l90HbiEsmLYDv2lmRKPjPHJ_xY7hcFP7h2ZHk6VM-jgqg_TR7LEWieRXpp884CTek10IBX5RLLdmdiZRLRlZYkLjLhBzAodaUFYSz8hidI32wHMxq-z57ek1UJIKpXWiVGoOCuccooalbsQMOG-NN4_rUy1yY1GFE5kjOespCo1SEualZpRKXlJz6G3Wq_wAggrQgBclDyACr0Lapoay43VLEWnVXYJ_WCMxUfDdrFo7XD1d_M1HAd7NwCPG-jVmx3ewpHd19V2cxe36Atwk5VA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwIxEJ4gmuhJDRjf9uDRhd1tl7ZHXwQjEg4cuJE-Zs0eeAQWD_5627JiTLx4atM2bTLNpI_55vsAbgVLuLHceZpgacQMepkX90pxdwWjhHYXDK6D2AQfDMR4LIc1uNvmwiBiAJ9hy1dDLN_Ozdp_lbW5e41kgu_ArlfOkptsrSofLoll-6F4f1KlZxNKOq1q8C_VlHBodA__t9wRNH-y78hwe64cQw1nDRjekymWKgoE0-SbCZyUc6I8rcgnktVah84o4C0LQ6znxPVyVmhJBcOauglJEL9ZNWHUfR499qJKDSEqZFxGWqLMWMdKK6mWqfUhk8yV2nmoEbHSqVaI3PKEZSnLqYw10pwmuWJUiCynJ1CfzWd4CoR1fAic55mHFTonVDTWJtNGsRitkskZNLwxJosN38WkssP53803sN8bvfUn_ZfB6wUceNtv4B6XUC-Xa7yCPfNRFqvlddiuL28TmI8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+International+Conference+on+Big+Data+%28Big+Data%29&rft.atitle=A+meta-graph+approach+to+analyze+subgraph-centric+distributed+programming+models&rft.au=Dindokar%2C+Ravikant&rft.au=Choudhury%2C+Neel&rft.au=Simmhan%2C+Yogesh&rft.date=2016-12-01&rft.pub=IEEE&rft.spage=37&rft.epage=47&rft_id=info:doi/10.1109%2FBigData.2016.7840587&rft.externalDocID=7840587