Double Inverted Pendulum Control Based on Three-loop PID and Improved BP Neural Network

To deal with the defects of BP neural networks used in balance control of inverted pendulum, such as longer train time and converging in partial minimum, this article realizes the control of double inverted pendulum with improved BP algorithm of artificial neural networks (ANN), builds up a training...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2011 Second International Conference on Digital Manufacturing and Automation S. 456 - 459
Hauptverfasser: Yingjun Sang, Yuanyuan Fan, Bin Liu
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.08.2011
Schlagworte:
ISBN:1457707551, 9781457707551
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To deal with the defects of BP neural networks used in balance control of inverted pendulum, such as longer train time and converging in partial minimum, this article realizes the control of double inverted pendulum with improved BP algorithm of artificial neural networks (ANN), builds up a training model of test simulation and the BP network is 6-10-1 structure. Tansig function is used in hidden layer and Purelin function is used in output layer, LM is used in training algorithm. The training data is acquired by three-loop PID algorithm. The model is learned and trained with Matlab calculating software, and the simulink simulation experiment results prove that improved BP algorithm for inverted pendulum control has higher precision, better astringency and lower calculation. This algorithm has wide application on nonlinear control and robust control field in particular.
AbstractList To deal with the defects of BP neural networks used in balance control of inverted pendulum, such as longer train time and converging in partial minimum, this article realizes the control of double inverted pendulum with improved BP algorithm of artificial neural networks (ANN), builds up a training model of test simulation and the BP network is 6-10-1 structure. Tansig function is used in hidden layer and Purelin function is used in output layer, LM is used in training algorithm. The training data is acquired by three-loop PID algorithm. The model is learned and trained with Matlab calculating software, and the simulink simulation experiment results prove that improved BP algorithm for inverted pendulum control has higher precision, better astringency and lower calculation. This algorithm has wide application on nonlinear control and robust control field in particular.
Author Yingjun Sang
Bin Liu
Yuanyuan Fan
Author_xml – sequence: 1
  surname: Yingjun Sang
  fullname: Yingjun Sang
  email: sangyingj@163.com
  organization: Fac. of Electron. & Electr. Eng., Huaiyin Inst. of Technol., Huaian, China
– sequence: 2
  surname: Yuanyuan Fan
  fullname: Yuanyuan Fan
  email: fyuanyuan123@163.com
  organization: Fac. of Electron. & Electr. Eng., Huaiyin Inst. of Technol., Huaian, China
– sequence: 3
  surname: Bin Liu
  fullname: Bin Liu
  organization: Fac. of Electron. & Electr. Eng., Huaiyin Inst. of Technol., Huaian, China
BookMark eNotjLFOwzAURY0ACVK6srD4B1L8nNiOxzYtEKlAh0qwVU78KgKJHTlJEX9PJLjL0T1XuhG5cN4hIbfAFgBM3xf5-nm54Axg6tkZiZiSWqSpEO_nJIJUKMWUEHBF5n3_yaZIqQH4NXlb-7FskBbuhGFAS3fo7NiMLc29G4Jv6Mr0k_aO7j8CYtx439FdsabGWVq0XfCnaV7t6AuOwTQThm8fvm7I5dE0Pc7_OSP7h80-f4q3r49FvtzGtWZDXCqWJchRV6URusrAakh4JQweVVVxnqIEa7iURgEajSYTaVZaxoSVtjRpMiN3f7c1Ih66ULcm_BwkE6AFJL-qKVKT
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICDMA.2011.118
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 076954455X
9780769544557
EndPage 459
ExternalDocumentID 6051951
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ADFMO
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
IERZE
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-b7083e2e9cba59c81d9132c5aef7cc224e61da266a71ea9ea8548bd005d6dba43
IEDL.DBID RIE
ISBN 1457707551
9781457707551
IngestDate Wed Aug 27 02:55:36 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-b7083e2e9cba59c81d9132c5aef7cc224e61da266a71ea9ea8548bd005d6dba43
PageCount 4
ParticipantIDs ieee_primary_6051951
PublicationCentury 2000
PublicationDate 2011-Aug.
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-Aug.
PublicationDecade 2010
PublicationTitle 2011 Second International Conference on Digital Manufacturing and Automation
PublicationTitleAbbrev icdma
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669112
ssib015832739
Score 1.4930407
Snippet To deal with the defects of BP neural networks used in balance control of inverted pendulum, such as longer train time and converging in partial minimum, this...
SourceID ieee
SourceType Publisher
StartPage 456
SubjectTerms Algorithm design and analysis
Artificial neural networks
Control systems
double inverted pendulum
Educational institutions
improved back propagation algorithm
Mathematical model
Software algorithms
three-loop pid
Training
Title Double Inverted Pendulum Control Based on Three-loop PID and Improved BP Neural Network
URI https://ieeexplore.ieee.org/document/6051951
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKxcAEqEW85YER0zhp7HikhYoOVBkq0a3y4yJVqpKqtPx-zk5SGFiY4iSL5df33fnuO0IeYlGIRDvOdKFSNuQRMETBjOnICBlrPDcLF4pNyNksWyxU3iGPh1wYAAjBZ_Dkm-Eu31V2711lA-H5hs-XPpJS1Lla7drhKS5N2Shc1qewwH0ch1yuVEpExpS3Ek_teyPiyCM1mI5f3p9rRU_uC4D8KrUSkGZy-r8-npH-T8oezQ9gdE46UPbIB9JjswbqxTS2SC1pDqXz7j46riPU6QhBzNGqpHOcU2DrqtrQfPpCdelo7W_A36Oceg0PvcZHCBrvk_nkdT5-Y00lBbZS0Y4ZiUQLYlDW6FRZpKgKjVCbaiiktQjiILjTCNVactAKdIZ2jHG4QX25KT1MLki3rEq4JDR1FtCEKqDgyTCWzkQQZ8g5DC8gTiC5Ij0_JstNrZWxbIbj-u_PN-Sk9dFG_JZ0d9s93JFj-7VbfW7vwwR_A6XuoUw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELaqggQToBbxxgMjpnESx_FIW6pWtFWGSHSrnPgiVaqSqrT8fs55FAYWpjjJYvn1fXe--46QJzfIAk8bznSmBPO5AwxRMGTaSQLpajw3M1MWm5DzebhYqKhFng-5MABQBp_Bi22Wd_mmSPfWVdYLLN-w-dJHwvddp8rWalYPF7g4Za1xWZ3DAe5kt8zmElIiNgreiDw177WMI3dUbzIYzl4rTU9uS4D8KrZSYs3o7H-9PCfdn6Q9Gh3g6IK0IO-QDyTIyRqoldPYIrmkEeTGOvzooIpRp32EMUOLnMY4q8DWRbGh0WRIdW5o5XHA3_2IWhUPvcZHGTbeJfHoLR6MWV1Lga2Us2OJRKoFLqg00UKlSFIVmqGp0JDJNEUYh4AbjWCtJQetQIdoySQGt6gtOKV975K08yKHK0KFSQGNqAwy7vmuNIkDboisI-EZuB5416Rjx2S5qdQylvVw3Pz9-ZGcjOPZdDmdzN9vyWnjsXX4HWnvtnu4J8fp1271uX0oJ_sbPpKkkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+Second+International+Conference+on+Digital+Manufacturing+and+Automation&rft.atitle=Double+Inverted+Pendulum+Control+Based+on+Three-loop+PID+and+Improved+BP+Neural+Network&rft.au=Yingjun+Sang&rft.au=Yuanyuan+Fan&rft.au=Bin+Liu&rft.date=2011-08-01&rft.pub=IEEE&rft.isbn=9781457707551&rft.spage=456&rft.epage=459&rft_id=info:doi/10.1109%2FICDMA.2011.118&rft.externalDocID=6051951
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457707551/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457707551/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457707551/sc.gif&client=summon&freeimage=true