Double Inverted Pendulum Control Based on Three-loop PID and Improved BP Neural Network
To deal with the defects of BP neural networks used in balance control of inverted pendulum, such as longer train time and converging in partial minimum, this article realizes the control of double inverted pendulum with improved BP algorithm of artificial neural networks (ANN), builds up a training...
Gespeichert in:
| Veröffentlicht in: | 2011 Second International Conference on Digital Manufacturing and Automation S. 456 - 459 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.08.2011
|
| Schlagworte: | |
| ISBN: | 1457707551, 9781457707551 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | To deal with the defects of BP neural networks used in balance control of inverted pendulum, such as longer train time and converging in partial minimum, this article realizes the control of double inverted pendulum with improved BP algorithm of artificial neural networks (ANN), builds up a training model of test simulation and the BP network is 6-10-1 structure. Tansig function is used in hidden layer and Purelin function is used in output layer, LM is used in training algorithm. The training data is acquired by three-loop PID algorithm. The model is learned and trained with Matlab calculating software, and the simulink simulation experiment results prove that improved BP algorithm for inverted pendulum control has higher precision, better astringency and lower calculation. This algorithm has wide application on nonlinear control and robust control field in particular. |
|---|---|
| AbstractList | To deal with the defects of BP neural networks used in balance control of inverted pendulum, such as longer train time and converging in partial minimum, this article realizes the control of double inverted pendulum with improved BP algorithm of artificial neural networks (ANN), builds up a training model of test simulation and the BP network is 6-10-1 structure. Tansig function is used in hidden layer and Purelin function is used in output layer, LM is used in training algorithm. The training data is acquired by three-loop PID algorithm. The model is learned and trained with Matlab calculating software, and the simulink simulation experiment results prove that improved BP algorithm for inverted pendulum control has higher precision, better astringency and lower calculation. This algorithm has wide application on nonlinear control and robust control field in particular. |
| Author | Yingjun Sang Bin Liu Yuanyuan Fan |
| Author_xml | – sequence: 1 surname: Yingjun Sang fullname: Yingjun Sang email: sangyingj@163.com organization: Fac. of Electron. & Electr. Eng., Huaiyin Inst. of Technol., Huaian, China – sequence: 2 surname: Yuanyuan Fan fullname: Yuanyuan Fan email: fyuanyuan123@163.com organization: Fac. of Electron. & Electr. Eng., Huaiyin Inst. of Technol., Huaian, China – sequence: 3 surname: Bin Liu fullname: Bin Liu organization: Fac. of Electron. & Electr. Eng., Huaiyin Inst. of Technol., Huaian, China |
| BookMark | eNotjLFOwzAURY0ACVK6srD4B1L8nNiOxzYtEKlAh0qwVU78KgKJHTlJEX9PJLjL0T1XuhG5cN4hIbfAFgBM3xf5-nm54Axg6tkZiZiSWqSpEO_nJIJUKMWUEHBF5n3_yaZIqQH4NXlb-7FskBbuhGFAS3fo7NiMLc29G4Jv6Mr0k_aO7j8CYtx439FdsabGWVq0XfCnaV7t6AuOwTQThm8fvm7I5dE0Pc7_OSP7h80-f4q3r49FvtzGtWZDXCqWJchRV6URusrAakh4JQweVVVxnqIEa7iURgEajSYTaVZaxoSVtjRpMiN3f7c1Ih66ULcm_BwkE6AFJL-qKVKT |
| ContentType | Conference Proceeding |
| DBID | 6IE 6IL CBEJK RIE RIL |
| DOI | 10.1109/ICDMA.2011.118 |
| DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| EISBN | 076954455X 9780769544557 |
| EndPage | 459 |
| ExternalDocumentID | 6051951 |
| Genre | orig-research |
| GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ADFMO ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK IEGSK IERZE OCL RIE RIL |
| ID | FETCH-LOGICAL-i90t-b7083e2e9cba59c81d9132c5aef7cc224e61da266a71ea9ea8548bd005d6dba43 |
| IEDL.DBID | RIE |
| ISBN | 1457707551 9781457707551 |
| IngestDate | Wed Aug 27 02:55:36 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-i90t-b7083e2e9cba59c81d9132c5aef7cc224e61da266a71ea9ea8548bd005d6dba43 |
| PageCount | 4 |
| ParticipantIDs | ieee_primary_6051951 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-Aug. |
| PublicationDateYYYYMMDD | 2011-08-01 |
| PublicationDate_xml | – month: 08 year: 2011 text: 2011-Aug. |
| PublicationDecade | 2010 |
| PublicationTitle | 2011 Second International Conference on Digital Manufacturing and Automation |
| PublicationTitleAbbrev | icdma |
| PublicationYear | 2011 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0000669112 ssib015832739 |
| Score | 1.4930407 |
| Snippet | To deal with the defects of BP neural networks used in balance control of inverted pendulum, such as longer train time and converging in partial minimum, this... |
| SourceID | ieee |
| SourceType | Publisher |
| StartPage | 456 |
| SubjectTerms | Algorithm design and analysis Artificial neural networks Control systems double inverted pendulum Educational institutions improved back propagation algorithm Mathematical model Software algorithms three-loop pid Training |
| Title | Double Inverted Pendulum Control Based on Three-loop PID and Improved BP Neural Network |
| URI | https://ieeexplore.ieee.org/document/6051951 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKxcAEqEW85YER0zhp7HikhYoOVBkq0a3y4yJVqpKqtPx-zk5SGFiY4iSL5df33fnuO0IeYlGIRDvOdKFSNuQRMETBjOnICBlrPDcLF4pNyNksWyxU3iGPh1wYAAjBZ_Dkm-Eu31V2711lA-H5hs-XPpJS1Lla7drhKS5N2Shc1qewwH0ch1yuVEpExpS3Ek_teyPiyCM1mI5f3p9rRU_uC4D8KrUSkGZy-r8-npH-T8oezQ9gdE46UPbIB9JjswbqxTS2SC1pDqXz7j46riPU6QhBzNGqpHOcU2DrqtrQfPpCdelo7W_A36Oceg0PvcZHCBrvk_nkdT5-Y00lBbZS0Y4ZiUQLYlDW6FRZpKgKjVCbaiiktQjiILjTCNVactAKdIZ2jHG4QX25KT1MLki3rEq4JDR1FtCEKqDgyTCWzkQQZ8g5DC8gTiC5Ij0_JstNrZWxbIbj-u_PN-Sk9dFG_JZ0d9s93JFj-7VbfW7vwwR_A6XuoUw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELaqggQToBbxxgMjpnESx_FIW6pWtFWGSHSrnPgiVaqSqrT8fs55FAYWpjjJYvn1fXe--46QJzfIAk8bznSmBPO5AwxRMGTaSQLpajw3M1MWm5DzebhYqKhFng-5MABQBp_Bi22Wd_mmSPfWVdYLLN-w-dJHwvddp8rWalYPF7g4Za1xWZ3DAe5kt8zmElIiNgreiDw177WMI3dUbzIYzl4rTU9uS4D8KrZSYs3o7H-9PCfdn6Q9Gh3g6IK0IO-QDyTIyRqoldPYIrmkEeTGOvzooIpRp32EMUOLnMY4q8DWRbGh0WRIdW5o5XHA3_2IWhUPvcZHGTbeJfHoLR6MWV1Lga2Us2OJRKoFLqg00UKlSFIVmqGp0JDJNEUYh4AbjWCtJQetQIdoySQGt6gtOKV975K08yKHK0KFSQGNqAwy7vmuNIkDboisI-EZuB5416Rjx2S5qdQylvVw3Pz9-ZGcjOPZdDmdzN9vyWnjsXX4HWnvtnu4J8fp1271uX0oJ_sbPpKkkw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+Second+International+Conference+on+Digital+Manufacturing+and+Automation&rft.atitle=Double+Inverted+Pendulum+Control+Based+on+Three-loop+PID+and+Improved+BP+Neural+Network&rft.au=Yingjun+Sang&rft.au=Yuanyuan+Fan&rft.au=Bin+Liu&rft.date=2011-08-01&rft.pub=IEEE&rft.isbn=9781457707551&rft.spage=456&rft.epage=459&rft_id=info:doi/10.1109%2FICDMA.2011.118&rft.externalDocID=6051951 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457707551/lc.gif&client=summon&freeimage=true |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457707551/mc.gif&client=summon&freeimage=true |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457707551/sc.gif&client=summon&freeimage=true |

