Application of Modified K-Means Clustering Algorithm in Battery Grouping

In the production process of lithium-ion battery, the inconsistency of single cell characteristics in battery pack will seriously affect the whole life and performance of battery pack. In this paper, a lithium-ion battery grouping model is proposed, which includes a data preprocessing model and a no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2018 IEEE 4th International Conference on Computer and Communications (ICCC) S. 2007 - 2011
Hauptverfasser: Wang, Lianjing, Tan, Jie, Man, Chuntao, Bai, Xiwei, Wang, Xuelei, Liu, Chengbao
Format: Tagungsbericht
Sprache:Englisch
Veröffentlicht: IEEE 01.12.2018
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the production process of lithium-ion battery, the inconsistency of single cell characteristics in battery pack will seriously affect the whole life and performance of battery pack. In this paper, a lithium-ion battery grouping model is proposed, which includes a data preprocessing model and a novel battery grouping method of K-means algorithm to meet the specific requirements. In the battery data preprocessing model, the faulty battery is removed by designing the process data preprocessing method and actual production standards. In the battery matching algorithm, an improved K-means algorithm is proposed. After the battery grouping is completed, the number of batteries in each cluster is equal. Additionally, experiments for battery grouping and method validation are designed. Compared with the actual method, the proposed method proves its effectiveness.
AbstractList In the production process of lithium-ion battery, the inconsistency of single cell characteristics in battery pack will seriously affect the whole life and performance of battery pack. In this paper, a lithium-ion battery grouping model is proposed, which includes a data preprocessing model and a novel battery grouping method of K-means algorithm to meet the specific requirements. In the battery data preprocessing model, the faulty battery is removed by designing the process data preprocessing method and actual production standards. In the battery matching algorithm, an improved K-means algorithm is proposed. After the battery grouping is completed, the number of batteries in each cluster is equal. Additionally, experiments for battery grouping and method validation are designed. Compared with the actual method, the proposed method proves its effectiveness.
Author Wang, Lianjing
Bai, Xiwei
Wang, Xuelei
Man, Chuntao
Tan, Jie
Liu, Chengbao
Author_xml – sequence: 1
  givenname: Lianjing
  surname: Wang
  fullname: Wang, Lianjing
  organization: School of Automation, Harbin University of Science and Technology, Harbin, China
– sequence: 2
  givenname: Jie
  surname: Tan
  fullname: Tan, Jie
  organization: Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 3
  givenname: Chuntao
  surname: Man
  fullname: Man, Chuntao
  organization: School of Automation, Harbin University of Science and Technology, Harbin, China
– sequence: 4
  givenname: Xiwei
  surname: Bai
  fullname: Bai, Xiwei
  organization: Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 5
  givenname: Xuelei
  surname: Wang
  fullname: Wang, Xuelei
  organization: Institute of Automation, Chinese Academy of Sciences, Beijing, China
– sequence: 6
  givenname: Chengbao
  surname: Liu
  fullname: Liu, Chengbao
  organization: Institute of Automation, Chinese Academy of Sciences, Beijing, China
BookMark eNotj1FLwzAUhSMo6OZ-gQj5A503uWm8eaxFN3HDl72PNE1npE1K2z3s31twD4cPzoHDOQt2G1P0jD0LWAsB5qVMXT-rW0sQtKZXAkP6hi1EjqQJ0eA9W43jLwBITTkIfGDbou_b4OwUUuSp4ftUhyb4mn9le2_jyMv2PE5-CPHEi_aUhjD9dDxE_man2b7wzZDO_Zw-srvGtqNfXblkh4_3Q7nNdt-bz7LYZcHAlFUISgjTEFmqrKtcbUAKh7oBckrVCrWV817ptTFkKPe18TOMVoBSOVyyp__a4L0_9kPo7HA5Xr_iH8vJTPg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CompComm.2018.8780986
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538683393
9781538683392
EndPage 2011
ExternalDocumentID 8780986
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i90t-b304119f88a8bacbcd9021c36f08c44d436a21532e6998985ed9e9859640324c3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:54:30 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i90t-b304119f88a8bacbcd9021c36f08c44d436a21532e6998985ed9e9859640324c3
PageCount 5
ParticipantIDs ieee_primary_8780986
PublicationCentury 2000
PublicationDate 2018-Dec.
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-Dec.
PublicationDecade 2010
PublicationTitle 2018 IEEE 4th International Conference on Computer and Communications (ICCC)
PublicationTitleAbbrev CompComm
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002685013
Score 1.6725807
Snippet In the production process of lithium-ion battery, the inconsistency of single cell characteristics in battery pack will seriously affect the whole life and...
SourceID ieee
SourceType Publisher
StartPage 2007
SubjectTerms Automation
Batteries
battery grouping
Clustering algorithms
Data models
Discharges (electric)
equal-number
modified K-means clustering
Production
Temperature measurement
Title Application of Modified K-Means Clustering Algorithm in Battery Grouping
URI https://ieeexplore.ieee.org/document/8780986
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pa8MgFJa27LDTNtqx33jYcbZpNOo7lrJSGC099NBbMeZlC3TJ6JLB_vtpEloGu-ykKCo-le_xfN97hDwqp_UKGSuGRgITIQIzKCOGEIixuyBWJk2yCbVc6s0GVh3ydODCIGLtfIZDX63_8pPCVt5UNtJKB6Bll3SVkg1X62BPCaWOnDrTknTGAYz8g_IsC--_pYft2F9JVGoMmZ39b_VzMjiS8ejqADMXpIN5n8wnx49nWqR0USRZ6rRJ-sIW6NCHTneVD4HgRtDJ7rXYZ-XbO81y2sTT_Ka1zcn1Dsh69ryezlmbFIFlEJQs5k6GY0i1Njo2NrYJOJS2XKaBtkIkgkvjUJyHKMGnhowwAXQFSBE43cnyS9LLixyvCLUKwhDQKuPmNBbjmKcpF9YIETlxwjXpeyFsP5qwF9t2_zd_N9-SUy_nxtPjjvTKfYX35MR-ldnn_qE-qx_c7pVt
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MKehJZRN_m4NHs3VNmibHMRyT_WCHHXYbafqqhdnK7AT_e5O2bAhePKWkJKEvKd_j5X3vA3gMrdfLRRRS1EJR7qOiGkVAUXm8Zw-IEXElNhHOZnK5VPMGPO24MIhYJp9hxz2Wd_lxbrYuVNaVofSUFAdw6JSzarbWLqLiCxlYh6am6fQ81XW_lONZuAwu2alH_5JRKVFkePq_9c-gvafjkfkOaM6hgVkLRv391TPJEzLN4zSx_iQZ0yla_CGD9dYVQbAjSH_9mm_S4u2dpBmpKmp-kzLqZN-2YTF8XgxGtJZFoKnyChoxa8WeSqTUMtImMrGyOG2YSDxpOI85E9riOPNRKCcOGWCs0DZKcM96T4ZdQDPLM7wEYkLl-wpNqO2c2mAUsSRh3GjOA2tOdQUtZ4TVR1X4YlV___Xf3Q9wPFpMJ6vJy2x8AyfO5lXexy00i80W7-DIfBXp5-a-3Lcf1seYtg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2018+IEEE+4th+International+Conference+on+Computer+and+Communications+%28ICCC%29&rft.atitle=Application+of+Modified+K-Means+Clustering+Algorithm+in+Battery+Grouping&rft.au=Wang%2C+Lianjing&rft.au=Tan%2C+Jie&rft.au=Man%2C+Chuntao&rft.au=Bai%2C+Xiwei&rft.date=2018-12-01&rft.pub=IEEE&rft.spage=2007&rft.epage=2011&rft_id=info:doi/10.1109%2FCompComm.2018.8780986&rft.externalDocID=8780986